cho a,b,c khác 0 thỏa mãn ab/(a+b) = bc/(b+c)= ca/(c+a). tính: ( ab+bc+ca) mũ 1008/a mũ 2016+ b mũ 2016 + c mũ 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\)\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ac}+\frac{a}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
Ta có: +) \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\)\(\Rightarrow\frac{1}{a}=\frac{1}{c}\)\(\Rightarrow a=c\) (1)
+) \(\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)\(\Rightarrow\frac{1}{b}=\frac{1}{a}\)\(\Rightarrow b=a\) (2)
Từ (1) và (2) => a = b = c
Lại có: \(P=\frac{\left(ab+bc+ac\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}=\frac{\left(a.a+a.a+a.a\right)^{1008}}{a^{2016}+a^{2016}+a^{2016}}=\frac{\left(a^2+a^2+a^2\right)^{1008}}{3.a^{2016}}\)
\(P=\frac{\left(3a^2\right)^{1008}}{3.a^{2016}}=\frac{3^{1008}.a^{2016}}{3.a^{2016}}=3^{1007}\)
\(ab+bc+ca=0\Rightarrow2ab+2bc+2ca=0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
Mà \(2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=0\)
Mà \(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\)
\(\Rightarrow a^2=b^2=c^2=0\)
\(\Rightarrow a=b=c=0\)
\(\Rightarrow P=1^{1945}+0^{1975}+\left(-1\right)^{2016}=2\)
Vậy ...
từ a+b+c = 0 => (a+b+c)2=0 => a2+b2+c2+2ab+2bc+2ac=0
từ ab+bc+ac = 0 => a2+b2+c2 =0
=> a=b=c=0
=>P= 3