Cho A = \(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\)
So sánh A với \(\dfrac{-1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
Sửa đề:
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\)
\(A=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)\left(\dfrac{1}{4^2}-\dfrac{4^2}{4^2}\right)....\left(\dfrac{1}{100^2}-\dfrac{100^2}{100^2}\right)\)
\(A=\dfrac{\left(1-2^2\right)}{2^2}.\dfrac{\left(1-3^2\right)}{3^2}.\dfrac{\left(1-4^2\right)}{4^2}....\dfrac{\left(1-100^2\right)}{100^2}\)
\(A=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}.\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}.\dfrac{\left(1-4\right)\left(1+4\right)}{4^2}......\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}\)
\(A=\dfrac{-3}{2^2}.\dfrac{-8}{3^2}.\dfrac{-15}{4^2}....\dfrac{-9999}{100^2}\)
Ta xét từ \(2\) đến \(100\) có: \(\dfrac{\left(100-2\right)}{1}+1=99\)
\(50\) là số lẻ nên tích trên là số âm
Hay \(-A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\)
\(-A=\dfrac{1.3.2.4.3.5....99.101}{2.2.3.3.4.4.....100.100}\)
\(-A=\dfrac{1.2.3....99}{2.3.4....100}.\dfrac{3.4.5....101}{2.3.4....100}\)
\(-A=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)
\(A=-\dfrac{101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}...\dfrac{-99}{100}.\dfrac{101}{100}\)
\(=\dfrac{-\left(1.2...99\right)}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)
\(\Rightarrow A< \dfrac{-1}{2}\)
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)
\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)
\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)
\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)
Vì (2) > (1) => B > A
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)..............\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).............\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}.............\dfrac{-99}{100}.\dfrac{101}{100}\)
\(=\dfrac{-\left(1.2.3....99\right)}{2.3......100}.\dfrac{3.4...101}{2.3....100}\)
\(=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)
\(\Leftrightarrow A< \dfrac{-1}{2}\)