K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

Đặt \(A=\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\left(1+\dfrac{7}{33}\right)....\left(1+\dfrac{7}{2900}\right)\)

\(B=\left(81-\dfrac{3}{4}\right)\left(81-\dfrac{3^2}{5}\right)\left(81-\dfrac{3^3}{6}\right)....\left(81-\dfrac{3^{2014}}{2017}\right)\)

Ta có:

\(A=\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\left(1+\dfrac{7}{33}\right).....\left(1+\dfrac{7}{2900}\right)\)

\(A=\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}.....\dfrac{2907}{2900}\)

\(A=\dfrac{2.8}{1.9}.\dfrac{3.9}{2.10}.\dfrac{4.10}{3.11}.....\dfrac{51.57}{50.58}\)

\(A=\dfrac{2.3.4.5.6....56.57}{1.2.3.4.5.....57.58}=\dfrac{1}{58}\)

\(B=\left(81-\dfrac{3}{4}\right)\left(81-\dfrac{3^2}{5}\right).....\left(81-\dfrac{3^{2014}}{2017}\right)\)

Vì trong dãy số trên có một thừa số là \(\left(81-\dfrac{3^6}{9}\right)=\left(81-81\right)=0\)

\(\Rightarrow B=0\)

\(a=A+B\Rightarrow a=\dfrac{1}{58}+0=\dfrac{1}{58}\)(1)

Thay (1) vào đa thức \(f\left(x\right)=5x-29a\) ta được:

\(f\left(x\right)=5x-29.\dfrac{1}{58}=5x-\dfrac{1}{2}\)

Ta lại có:

\(f\left(x\right)=0\Leftrightarrow5x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{10}\)

Vậy nghiệm của đa thức trên là \(\dfrac{1}{10}\)

Chúc bạn học tốt!!!

17 tháng 8 2017

có lí

1:

a: =7/5(40+1/4-25-1/4)-1/2021

=21-1/2021=42440/2021

b: =5/9*9-1*16/25=5-16/25=109/25

7 tháng 10 2017

làm nhanh giúp mik vs

7 tháng 10 2017

b. \(\left(\dfrac{3^2}{9}.\dfrac{3^3}{81}\right)^{12}:\left(\dfrac{3^6}{81^2}\right)^{10}\)

\(=\left(1.\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left(\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left[\left(\dfrac{1}{3}\right)^2\right]^6:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left(\dfrac{1}{9}\right)^6:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left(\dfrac{1}{9}\right)^{-4}=6561\)

3 tháng 2 2019

Với mọi \(n\in\text{ℕ*}\), ta có:

\(\dfrac{2}{n\sqrt{n+2}+\left(n+2\right)\sqrt{n}}\)\(=\dfrac{2\left(n\sqrt{n+2}-\left(n+2\right)\sqrt{n}\right)}{\left(n+2\right)^2n-n^2\left(n+2\right)}\)\(=\dfrac{2\left[\left(n+2\right)\sqrt{n}-n\sqrt{n+2}\right]}{n\left(n+2\right)}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+2}}\)

Vậy ta có:

\(2A=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...-\dfrac{1}{\sqrt{81}}\)

\(=1-\dfrac{1}{\sqrt{81}}\)

\(A=\dfrac{1-\dfrac{1}{\sqrt{81}}}{2}\)

24 tháng 12 2021

\(=-\dfrac{1}{27}-\dfrac{1}{2}+\dfrac{9}{8}+9=\dfrac{2071}{216}\)

24 tháng 12 2021

sai rồi bn ạ, kết quả bằng \(\dfrac{19}{2}\)

b: 1/2x-4=0

=>1/2x=4

hay x=8

a: x+7=0

=>x=-7

e: 4x2-81=0

=>(2x-9)(2x+9)=0

=>x=9/2 hoặc x=-9/2

g: x2-9x=0

=>x(x-9)=0

=>x=0 hoặc x=9

8 tháng 4 2022

a)\(x+7=0=>x=-7\)

b)\(\dfrac{1}{2}x-4=0=>\dfrac{1}{2}x=4=>x=8\)

c)\(-8x+20=0=>-8x=-20=>x=\dfrac{5}{2}\)

d)\(x^2-100=0=>x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

a: x+7=0

nên x=-7

b: x-4=0

nên x=4

c: -8x+20=0

=>-8x=-20

hay x=5/2

d: x2-100=0

=>(x-10)(x+10)=0

=>x=10 hoặc x=-10

8 tháng 4 2022

a) x +7 =0

=>x = -7

b) x - 4 =0=>x = 4

c) -8x + 20 = 0 =>-8x =-20 =>\(x=-\dfrac{20}{-8}=\dfrac{5}{2}\)

d)\(x^2-100=0=>x^2=100>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

1: \(\Leftrightarrow\left(\dfrac{x+1}{85}+1\right)+\left(\dfrac{x+3}{83}+1\right)=\left(\dfrac{x+5}{81}+1\right)+\left(\dfrac{x+7}{79}+1\right)\)

=>x+86=0

=>x=-86

2: \(\Leftrightarrow\left(\dfrac{x-1}{2015}+1\right)-\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+7}{2007}+1\right)-\left(\dfrac{x+11}{2003}+1\right)\)

=>x+2014=0

=>x=-2014

3: \(\Leftrightarrow3\left(x+4\right)-2\left(x-3\right)=4x\)

=>4x=3x+12-2x+6

=>4x=x+18

=>3x=18

=>x=6

4: \(\Leftrightarrow15x-5\left(x+1\right)=3\left(2x+1\right)\)

=>15x-5x-5=6x+3

=>10x-5=6x+3

=>4x=8

=>x=2

5: \(\Leftrightarrow2\left(2x-7\right)+5\left(x+11\right)=-40\)

=>4x-14+5x+55=-40

=>9x+41=-40

=>x=-9

2 tháng 2 2023

em c.ơn nhiều lắm ạ