K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{2450}\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}-...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+..+\dfrac{1}{50}\right)\)

\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(A=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=B\)

\(\Rightarrow A:B=1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

1/* Chứng minh rằng:

\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)

2/* Cho:

A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)

Các bn giúp mk những bài này nha!

4
16 tháng 7 2017

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

16 tháng 7 2017

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy \(x=-2004\)

23 tháng 4 2017

a. Ta có: \(\dfrac{1}{21}>\dfrac{1}{40};\dfrac{1}{22}>\dfrac{1}{40};...;\dfrac{1}{40}=\dfrac{1}{40}\)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}\)(20 số hạng vì A có 20 số hạng)

\(\Rightarrow A>\dfrac{1}{40}.20\)

\(\Rightarrow A>\dfrac{1}{2}\left(1\right)\)

Ta lại có: \(\dfrac{1}{21}< \dfrac{1}{20};\dfrac{1}{22}< \dfrac{1}{20};...;\dfrac{1}{40}< \dfrac{1}{20}\)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}< \dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\) (20 số hạng)

\(\Rightarrow A< \dfrac{1}{20}.20\)

\(\Rightarrow A< 1\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\) ta suy ra \(\dfrac{1}{2}< A< 1\)

23 tháng 4 2017

b.Ta có: Đặt \(A=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(B=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)\(\Rightarrow B=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow B=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow B=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(\Rightarrow B=\dfrac{1}{25}+\dfrac{1}{26}+...+\dfrac{1}{50}=A\)

\(\Rightarrow B=A\left(đpcm\right)\)

12 tháng 7 2017

2, a-b=ab => a=ab+b => a=b(a+1)

thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1

Theo bài ra ta có: a:b=a-b

=> a+1=a-b

=>-b=1

=> b=-1

Thay b=-1 vào a-b=ab ta có : a-(-1)=-a

=> a +1=-a

=>a=-1/2

Vậy a=-1/2. b=-1

27 tháng 7 2018

Ta có :

Vế phải =1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50

= (1+ 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + ... +1/50)

<=> (1 + 1/2 + 1/3 + 1/4 + ... + 1/49+1/50)- 2(1/2 +1/4 +...+1/50)

=(1+1/2 +1/3 +1/4...+ 1/49+1/50) - (1+1/2 +...+1/25)

=1/26 + 1/27 +1/28 +...+1/50 (đpcm)

27 tháng 7 2017

Câu hỏi của Phương Uyên - Toán lớp 7 | Học trực tuyến

mình ko có thời gian

bạn tự xem nhé

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

10 tháng 3 2019

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)

6 tháng 5 2023

Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + .. + 1/50
Xét vế trái:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) - ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) + (1/2 + 1/4 + 1/6 + ... + 1/50 ) - 2 . ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/49 + 1/50 ) - ( 1 + 1/2 + 1/3 + ... + 1/25 )
= 1/26 + 1/27 + 1/28 + ... + 1/49 + 1/50 (1)
Từ (1) => Vế trái = Vế phải 
=> Điều phải chứng minh 
- HokTot -