K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

Điều kiện xác định : sin4x ≠ 0 

3tan2x + 2cos2x = \(\dfrac{3}{cos2x}\) + 2 \(\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{cos\left(x-\dfrac{\pi}{4}\right)}\)

⇔ 3tan2x + 2cos2x = \(\dfrac{3}{cos2x}\) + 2 \(\dfrac{sinx-cosx}{sinx+cosx}\)

⇒ 3tan2x . cos2x + 2cos22x = 3 + 2\(\dfrac{sinx-cosx}{sinx+cosx}\).cos2x

⇒ 3sin2x + 2cos22x = 3 + 2. \(\dfrac{sinx-cosx}{sinx+cosx}\).(cosx - sinx)(cosx + sinx)

⇒ 3sin2x + 2cos22x = 3 - 2(sinx - cosx)2

⇔ 3sin2x + 2cos22x = 3 - 2 . (1 - sin2x)

⇔ 3sin2x + 2 -  2sin22x = 3 - 2 + 2sin2x

⇔  - 2sin22x + sin2x + 1  = 0

⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-\dfrac{1}{2}\end{matrix}\right.\)

Loại sin2x = 1 vì khi đó cos2x = 0 (vi phạm ĐKXĐ)

⇔ sin2x = \(-\dfrac{1}{2}\)

Giải nốt nhé

 

 
17 tháng 9 2021

d, Hàm số xác định khi:

\(\left\{{}\begin{matrix}cos\left(x+\dfrac{\pi}{4}\right)\ne0\\sinx.cosx+cos2x-3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\\\dfrac{1}{2}sin2x+cos2x\ne3\end{matrix}\right.\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\)

17 tháng 9 2021

e, Hàm số xác định khi:

\(\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

NV
6 tháng 7 2021

1.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)

\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)

\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)

2.

Đề bài thiếu, cos?x

Và x thuộc khoảng nào?

3.

\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)

\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)

\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)

4.

\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)

\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)

1 tháng 6 2021

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

1 tháng 6 2021

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

$\tan (\frac{\pi}{2}+x)-3\tan ^2x=\frac{\cos 2x-1}{\cos ^2x}=\frac{2\cos ^2x-2}{\cos ^2x}=\frac{2(\cos ^2x-1)}{\cos ^2x}$

$=\frac{-2\sin ^2x}{\cos ^2x}=-2\tan ^2x$

$\Leftrightarrow \tan (x+\frac{\pi}{2})=\tan ^2x$

Dễ thấy $\tan x=0$ không thỏa mãn nên $\tan x\neq 0$. Do đó pt $\Leftrightarrow \tan ^2x=\tan [\pi +(x-\frac{\pi}{2})]=\tan (x-\frac{\pi}{2})=-\tan (\frac{\pi}{2}-x)=-\cot x =\frac{-1}{\tan x}$

$\Rightarrow \tan ^3x=-1$

$\Rightarrow \tan x=-1$

$\Rightarrow x=\frac{-\pi}{4}+k\pi$ với $k$ nguyên.