K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2017

Lời giải:

Tính toán đơn giản: \(AC=\sqrt{3}a, DB=a\)

Ý 1:

Do \(SA\perp (ABCD)\Rightarrow SA\perp AC\). Áp dụng định lý Pitago:

\( \frac{1}{d(A,SC)^2}=\frac{1}{SA^2}+\frac{1}{AC^2}\Leftrightarrow \frac{1}{a^2}=\frac{1}{SA^2}+\frac{1}{3a^2}\Rightarrow SA=\frac{\sqrt{6}}{2}a\)

\(\Rightarrow V_{\text{chóp}}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{6}a}{2}.\frac{AC.BD}{2}=\frac{\sqrt{2}a^3}{4}\)

Ý 2:

Kẻ \(AH\perp BC\) với \(H\in BC\). Có \(\left\{\begin{matrix} AH\perp BC\\ SA\perp BC\end{matrix}\right.\Rightarrow BC\perp (SAH)\)

Kẻ \(AT\perp SH\), mà \(AT\perp BC\) do \(AT\in (SAH)\) , do đó \(AT\perp (SBC)\)

\(\Rightarrow AT=d(A,(SBC))=\sqrt{\frac{SA^2.AH^2}{SA^2+AH^2}}\)

\(AH=\sin 60.AB=\frac{\sqrt{3}a}{2}\), suy ra \(d(A,(SBC))=AT=\frac{\sqrt{2}a}{2}\)

Ý 3:

Kẻ \(BK\parallel AC\) cắt $AD$ tại $K$

Ta có: \(d(SB,AC)=d(AC,(SBK))=d(A,(SBK))\)

Kẻ \(AR\perp BK\).

\(AR=AB.\sin ABK=AB.\sin BAC=AB\sin 30=\frac{a}{2}\)

Kẻ \(AM\perp SR\) thì $AM$ chính là khoảng cách từ $A$ đến $(SBK)$

\(d(A,(SBK))=AM=\sqrt{\frac{SA^2.AR^2}{SA^2+AR^2}}=\frac{\sqrt{42}a}{14}\)

NV
12 tháng 6 2021

Dễ dàng chứng minh \(BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)

Gọi O là tâm đáy, kẻ \(OH\perp SC\Rightarrow SC\perp\left(BDH\right)\)

\(\Rightarrow\widehat{BHD}\) hoặc góc bù của nó là góc giữa (SBC) và (SCD) \(\Rightarrow\widehat{BHD}=60^0\) hoặc \(120^0\)

\(\Rightarrow\widehat{BHO}\) bằng \(30^0\) hoặc \(60^0\)

Tam giác ABD đều \(\Rightarrow BD=a\) \(\Rightarrow OB=\dfrac{a}{2}\)

TH1: \(\widehat{BHO}=30^0\)

\(\Rightarrow OH=\dfrac{OB}{tan30^0}=\dfrac{a\sqrt{3}}{2}=OC\Rightarrow\Delta\) vuông OCH có cạnh huyền bằng cạnh góc vuông (loại)

TH2: \(\widehat{BHO}=60^0\Rightarrow OH=\dfrac{OB}{tan60^0}=\dfrac{a\sqrt{3}}{6}\)

\(\Rightarrow SA=AC.tan\widehat{SCA}=AC.\dfrac{OH}{\sqrt{OC^2-OH^2}}=\dfrac{a\sqrt{6}}{4}\)

Từ A kẻ \(AM\perp SB\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM=d\left(A;\left(SBC\right)\right)\)

\(AD||BC\Rightarrow AD||\left(SBC\right)\Rightarrow d\left(BK;AD\right)=d\left(AD;\left(SBC\right)\right)=d\left(A;\left(SBC\right)\right)=AM\)

\(\dfrac{1}{AM^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{11}{3a^2}\Rightarrow AM=\dfrac{a\sqrt{33}}{11}\)

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

30 tháng 7 2016

câu e hình nhừ đè bài thiếu

 

17 tháng 8 2017

Đáp án B

3 tháng 12 2018

Đáp án B

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0