tính nhanh 1/1x3x5 x 1/3x5x7 x ... x 1/95x97x99
trân thành cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+\frac{4}{7.9.11}+\frac{4}{9.11.13}\)
= \(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+\frac{1}{7.9.11}+\frac{1}{9.11.13}\)
= \(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
= \(\frac{1}{1.3}-\frac{1}{11.13}\)
= \(\frac{140}{429}\)
~~~
Không chắc chắn lắm nhé :3
#Sunrise
nhớ cho k nhé !
4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13
1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)
\(D= \dfrac{1}{1.3} + \dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right)}\),
\(2.D = \dfrac{2}{1.3}+ \dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right).\left(2n+1\right)}\)
\(2.D = 1 - \dfrac{1}{3} + \dfrac{1}{3}- \dfrac{1}{5} +\dfrac{1}{5}- \dfrac{1}{7} + ... + \dfrac{1}{\left(2n-1\right)}-\dfrac{1}{\left(2n+1\right)}\)
\(2.D = 1 - \dfrac{1}{\left(2n+1\right)}\)
\(2.D= \dfrac{2n}{\left(2n+1\right)} \)
Vậy \(D = \dfrac{n}{\left(2n+1\right)}\)
\(E=\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right).\left(2n+3\right)}\)
\(\Rightarrow4E=4.\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right).\left(2n+3\right)}\)
\(=\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...+\dfrac{4}{\left(2n-1\right).\left(2n+1\right).\left(2n+3\right)}\)
\(=\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}-...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(=\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(\Rightarrow E=\dfrac{\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right)}}{4}\)
\(=\dfrac{1}{12}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right).4}\)