Cho biết \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\). Chứng minh: x:y:z = a:b:c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Nên \(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcz}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcz}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcz}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)
Nên \(\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{c}{z}\)
Vì bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
theo tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
vì cx-az/b=0=>cx=az=>x/a=z/c (2)
từ (1) và (2) => x/a=y/b=z/c
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)
\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
\(=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)
\(=\dfrac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow abz-acy=bcx-abz=acy-bcx\)
\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)
\(\Rightarrow bz-cy=cx-az=ay-bx\)
\(\Rightarrow\left\{{}\begin{matrix}bx=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{y}{b}=\dfrac{x}{a}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Vậy \(x:y:z=a:b:c\)
Ta có : bz-cy/a=cx-az/b=ay-bx/c
=a.(bz-cy)/a.a=b.(cx-az)/b.b=c.(ay-bx)/c.c
=abz-acy/a.a=bcx-baz/b.b=cay-cbx/c.c
=abz-acy+bcx-baz+cay-cbx/a.a+b.b+c.c(áp dụng tính chất dãy tỉ số bằng nhau)
=0 =)bz-cy=cx-az=ay-bx=0
=)bz=cy,cx=az,ay=bx
=)b/y=c/z=a/x(áp dụng tính chất tỉ lệ thức)
=)a:b:c=x:y:z
Ta có: \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-abx}{c^2}\)
\(=\dfrac{abz-acy+bcx-abz+acy-abx}{a^2+b^2+c^2}\)
\(=\dfrac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow abz-acy=bcx-abz=acy-abx\)
\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)
\(\Rightarrow bz-cy=cx-az=ay-bx\)
\(\Rightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\dfrac{z}{c}=\dfrac{y}{b};\dfrac{x}{a}=\dfrac{z}{c};\dfrac{y}{b}=\dfrac{x}{a}\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x:y:z=a:b:c\)
Vậy x:y:z = a:b:c
https://olm.vn/hoi-dap/question/116940.html