1) Chứng minh: \(\dfrac{1}{n+\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
2) Áp dụng tính tổng: A= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Giúp mình nha. Mình cảm ơn trước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)
a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
a.
\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)
b.
\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)
Câu 1 :
1/n - 1/n + a = a + n/a ( a + n ) = a + n - a/a ( n + a ) = n/a ( a + n )
Câu 2 :
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/99 - 1/100
= 1/1 - 1/100 = 99/100
a) \(\forall\)n \(\in\) N* ta có :
\(\dfrac{1}{n\left(n+1\right)}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)
var n,i:integer;
s:real;
begin
write('n=');readln(n);
s:=0;
for i:=1 to n do s:=s+(1/(i*(i+1)));
writeln(' Tong la: ',s);
readln;
end.
2) var n,i:integer;
s:real;
begin
write('n=');readln(n);
s:=0;
for i:=1 to n do s:=s+(1/((2*i)-1));
writeln(' Tong la: ',);
readln;
end.
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
Học từ lớp 4 rồi :V
\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)
Vậy với \(n=k+1\) thì mệnh đề cũng đúng
Vậy theo pp quy nạp ta đc đpcm
1) Ta có :
\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
Vậy \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\rightarrowđpcm\)
2) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow A=1-\dfrac{1}{100}\)
\(\Leftrightarrow A=\dfrac{99}{100}\)
Cảm ơn bạn nhưng cho mình hỏi đpcm là gì thế?