Cho m=(-a+b)-(b+c-a)+(c-a),trong đó b,c thuộc tập Z ,a là số nguyên âm.Chứng minh rằng m luôn dương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NN
1
8 tháng 1 2016
M=-a-b-a+b-c=-c
vi c nguyen am suy ra c<0
suy ra -c>0
suy ra M luon duong (dpcm)
9 tháng 5 2017
\(M=-a+b-b-c+a+c-a\)
\(=-a\)
Vì a là 1 số nguyên âm nên \(-a>0\)hay biểu thức M luôn luôn dương
13 tháng 1 2016
-a+b-b-c+a+c-a
=-(a-a+a)+(b-b)-(c-c)
=-a+0-0
M ko phải số dương
Ta có:
-(a+b)-(b+c-a)+(c-a)
=-a-b-b-c+a+c-a ( phá ngoặc theo qui tắc dấu ngoặc đã học )
=[(-a+a)-c+c]-b-b-a ( đổi vị trí các số hạng)
=0-a-b-b
=-a-2b
Vì a là số âm nên -a là số dương và lớn hơn 0.
Còn tiếp chắc đề sai nên tớ thui zậy ♥