1.Cho 2 đường thẳng cắt nhau tại A và có các góc tạo thành là\(\widehat{A1},\widehat{A2},\widehat{A3},\widehat{A4}\).Tính các góc \(\widehat{A1},\widehat{A2},\widehat{A3},\widehat{A4}\).Biết:
a)\(\widehat{A1}+\widehat{A3}=120^o\)
b)\(\widehat{A2}-\widehat{A1}=30^o\)
Hình:
Giải:
a) Ta có: \(\widehat{A_1}+\widehat{A_3}=120^0\)
Mà \(\widehat{A_1}=\widehat{A_3}\) (Hai góc đối đỉnh)
\(\Leftrightarrow\widehat{A_1}=\widehat{A_3}=\dfrac{120^0}{2}=60^0\)
\(\Leftrightarrow\widehat{A_2}=\widehat{A_4}=180^0-60^0=120^0\)
Vậy ...
b) Ta có: \(\widehat{A_2}-\widehat{A_1}=30^0\left(1\right)\)
Mà \(\widehat{A_2}+\widehat{A_1}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow\widehat{A_2}=180^0-\widehat{A_1}\)
\(\left(1\right)\Leftrightarrow180^0-\widehat{A_1}-\widehat{A_1}=30^0\)
\(\Leftrightarrow180^0-2\widehat{A_1}=30^0\)
\(\Leftrightarrow2\widehat{A_1}=150^0\)
\(\Leftrightarrow\widehat{A_1}=75^0\left(2\right)\)
\(\Leftrightarrow\widehat{A_1}=\widehat{A_3}=75^0\) (Hai góc đối đỉnh)
\(\left(2\right)\Leftrightarrow\widehat{A_2}=180^0-75^0=105^0\)
\(\Leftrightarrow\widehat{A_2}=\widehat{A_4}=105^0\) (Hai góc đối đỉnh)
Vậy ...