rut gon bieu thuc :
a,\(\left(a+b\right)^3-\left(a-b\right)^3-6a^2b\)
b,\(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(a\ne b\ne c\)
\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{a+b+c}{2}\)
\(\left(x+2\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=\left(x+2\right)\left(x-2-x-2\right)\)
\(=\left(-4\right)\left(x+2\right)\)
a: \(P=\dfrac{a+3}{a}\cdot\dfrac{a^2-9-6a+18}{\left(a-3\right)\left(a+3\right)}\)
\(=\dfrac{\left(a-3\right)^2}{a\left(a-3\right)}=\dfrac{a-3}{a}\)
b: Để P=-2 thì -2a=a-3
=>-3a=-3
=>a=1
c: Để P nguyên thì a-3 chia hết cho a
=>-3 chia hết cho a
mà a<>0; a<>3; a<>-3
nên \(a\in\left\{1;-1\right\}\)
a) \(\left(a+b\right)^3-\left(a-b\right)^3-6a^2b\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6a^2b\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-6a^2b\)
\(\Leftrightarrow2b^3\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3-6ab^2\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6ab^2\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-6ab^2\)
\(\Leftrightarrow2b^3+6a^2b-6ab^2\)