K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: ta có:ΔHBA\(\sim\)ΔABC

nên BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=1.8\left(cm\right)\)

CH=BC-BH=3,2(cm)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: ta có:ΔHBA\(\sim\)ΔABC

nên BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=1.8\left(cm\right)\)

CH=BC-BH=3,2(cm)

19 tháng 5 2021

Giúp e với mọi người ơi

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

Do đó:ΔHBA\(\sim\)ΔABC

b: ta có: ΔHBA\(\sim\)ΔABC

nên BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

30 tháng 4 2022

thiếu phần c bạn giải giúp mik với

9 tháng 4 2021

Giúp mình với mọi người 😭😭

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm