Giup mik với :
C1/.x4+2x3-4x-4 C2/ x(x+2y)3-y(2x+y)3 C3/. x4- 30x2+31x-30 C4/. 60x+18x2- 6x3 C5/. x4+6x+8 C6/. x4- 5x2+x3 -5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{2x^3-5x^2-x+1}{2x+1}\)
\(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}\)
\(=x^2-3x+1\)
b: \(\dfrac{x^3-2x+4}{x+2}\)
\(=\dfrac{x^3+2x^2-2x^2-4x+2x+4}{x+2}\)
\(=x^2-2x+2\)
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
Chọn đáp án B
+ Đồ thị (C1) của hàm số y = x 3 - 3 x 2 + 4 có tâm đối xứng chính là điểm uốn U của đồ thị. Hoành độ điểm uốn là nghiệm của phương trình y ' ' = 0
+ Đồ thị (C2) của hàm số y = - x 4 + x 2 - 3 không có tâm đối xứng, tuy nhiên đồ thị nhận trục tung Oy làm trục đối xứng (do hàm số là hàm chẵn).
+ Đồ thị (C3) của hàm số y = 5 x + 2 x - 1 có tâm đối xứng là điểm I 1 ; 5 là giao điểm của hai đường tiệm cận.
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
1) \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)
2) \(x^3-9x^2+6x+16\)
\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)
\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
3) \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-1\right)\)
4) \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)
\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
gửi phần này trước còn lại làm sau !!! tk mk nka !!!
Thu gọn và sắp xếp phải k ạ?
`F(x)= (x^4-x^4)+(5x^2-8x^2)-4x+x^5+3+2x^3+2`
`F(x) = -3x^2-4x+x^5+3+2x^3+2`
`F(x)= x^5+2x^3-3x^2-4x+3+2`
\(F\left(x\right)=x^4+5x^2-4x+x^5-x^4-8x^2+3+2x^3+2\)
\(F\left(x\right)=x^5+\left(x^4-x^4\right)+2x^3+\left(5x^2-8x^2\right)-4x+\left(3+2\right)\)
\(F\left(x\right)=x^5+2x^3-3x^2-4x+5\)
a,\(x^3-7x+6\)
\(=x^3-2x^2+2x^2-4x-3x+6\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)
\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2+2x-3\right)\)
\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)
\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)
\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)
\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)
b,\(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)
\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)
\(=\left(x-8\right).\left(x^2-x-2\right)\)
\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)
\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)
\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)
\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)
c,\(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)
\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)
\(=\left(x-5\right).\left(x^2-x-6\right)\)
\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)
\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)
\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)
\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)
Chúc bạn học tốt!!!
d,\(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)
\(=\left(2x+1\right).\left(x^2-x+3\right)\)
e, \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)
\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)
Chúc bạn học tốt!!!
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
Đề là gì vậy bn ????
Mik có ghi mà bạn câu 1,2,... đó