Rút gọn :
a) \(\sqrt{49-20\sqrt{6}}-\sqrt{106+20\sqrt{6}}\)
b) \(\sqrt{83-20\sqrt{6}}+\sqrt{62-20\sqrt{6}}\)
c) \(\sqrt{302-20\sqrt{6}}+\sqrt{203-20\sqrt{6}}\)
d) \(\sqrt{601-20\sqrt{6}}-\sqrt{154-20\sqrt{6}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{47+\sqrt{5}}\cdot\sqrt{47-\sqrt{5}}\)
\(=\sqrt{2204}=2\sqrt{551}\)
\(B=5-2\sqrt{6}+10+\sqrt{6}=15-\sqrt{6}\)
\(A=\sqrt{\left(47+\sqrt{5}\right)\left(47-\sqrt{5}\right)}=2\sqrt{551}\)
\(B=5-2\sqrt{6}+10+\sqrt{6}=15-\sqrt{6}\)
B = \(\sqrt{\sqrt{75-2.2\sqrt{2}.5\sqrt{3}+8}+\sqrt{50-2.2\sqrt{3}.5\sqrt{2}+12}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
= \(\sqrt{\sqrt{\left(5\sqrt{3}-2\sqrt{2}\right)^2}+\sqrt{\left(5\sqrt{2}+2\sqrt{3}\right)^2}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
= \(\sqrt{5\sqrt{3}-2\sqrt{2}+5\sqrt{2}-2\sqrt{3}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
= \(\sqrt{3\sqrt{3}+3\sqrt{2}}.\sqrt{3\sqrt{3}-3\sqrt{2}}=\sqrt{\left(3\sqrt{3}+3\sqrt{2}\right)\left(3\sqrt{3}-3\sqrt{2}\right)}\)
= \(\sqrt{27-18}=\sqrt{9}=3\)
Phân tích cái trong ngặc đầu thành: (5 căn 3 - 2 căn 2)^2
cái thứ 2 là ( 5 căn 2 - 2 căn 3)^2
sau đó phá đc 1 ngặc làm tiếp
Ta có \(\sqrt[4]{49+20\sqrt{6}}=\sqrt[4]{25+10\sqrt{24}+24}=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}\)
\(=\sqrt[4]{\left(\sqrt{3}+\sqrt{2}\right)^4}=\sqrt{3}+\sqrt{2}\)
Tương tự : \(\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\) ( Do \(\sqrt{3}>\sqrt{2}\) )
Suy ra \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
\(A=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{2}.\sqrt{6-2\sqrt{5}}+\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{2}\left(\sqrt{5}-1\right)+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{10}+\sqrt{2}+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}=\dfrac{1}{2}\)
a. \(\sqrt{49-20\sqrt{6}}-\sqrt{106+20\sqrt{6}}=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(10+\sqrt{6}\right)^2}=5-2\sqrt{6}-10-\sqrt{6}=-5-3\sqrt{6}\)
b. \(\sqrt{83-20\sqrt{6}}+\sqrt{62-20\sqrt{6}}=\sqrt{\left(5\sqrt{3}-2\sqrt{2}\right)^2}+\sqrt{\left(5\sqrt{2}-2\sqrt{3}\right)^2}=5\sqrt{3}-2\sqrt{2}+5\sqrt{2}-2\sqrt{3}=3\sqrt{3}+3\sqrt{2}\)
c. \(\sqrt{302-20\sqrt{6}}+\sqrt{203-20\sqrt{6}}=\sqrt{\left(10\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(10\sqrt{2}-\sqrt{3}\right)^2}=10\sqrt{3}-\sqrt{2}+10\sqrt{2}-\sqrt{3}=9\sqrt{3}+9\sqrt{2}\)
d. \(\sqrt{601-20\sqrt{6}}-\sqrt{154-20\sqrt{6}}=\sqrt{\left(10\sqrt{6}-1\right)^2}-\sqrt{\left(5\sqrt{6}-2\right)^2}=10\sqrt{6}-1-5\sqrt{6}+2=1+5\sqrt{6}\)