Tìm x , y , z , t thỏa mãn :
\(\overline{xy}=\overline{yz}+\overline{zt^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho xyzt là các chữ số thỏa mãn xy khác không tìm số a = x y z t biết a - 2 x y z t = xz với kí hiệu xyz t là số tự nhiên có 4 chữ số thứ tự là x y z t
\(\overline{xy}.x=\overline{zzz}\)
\(\Rightarrow\overline{xy}.x=37.3.z\)
Vì \(\overline{xy}.x⋮37\) nên \(\left[{}\begin{matrix}\overline{xy}⋮37\\x⋮37\end{matrix}\right.\). Nhưng x khác 0 nên \(x⋮̸37\), do đó \(\overline{xy}⋮37\)
\(\Rightarrow\left[{}\begin{matrix}\overline{xy}=37\\\overline{xy}=74\end{matrix}\right.\)
+ Nếu \(\overline{xy}=37\) thì x = 3 \(\Rightarrow\overline{zzz}=111\), chọn
+ Nếu \(\overline{xy}=74\) thì x = 7 \(\Rightarrow\overline{zzz}=518\), loại.
Vậy, x = 3, y = 7, z = 1
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
\(1\le\overline{zt}^2\le81\Leftrightarrow1\le\overline{zt}\le9\)\(\Rightarrow z=0\)
\(PT\Leftrightarrow10x+y=10y+\overline{t}^2\)
\(\Leftrightarrow10x-9y=\overline{t}^2\)
(*) t=1 \(\Rightarrow10x-9y=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
(*) t=2 \(\Rightarrow10x-9y=4\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
(*) t=3\(\Rightarrow10x-9y=9\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)
(*) t=4 \(\Rightarrow10x-9y=16\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\)
(*) t=5 .....