K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(S=\dfrac{4}{1.2.3}-\dfrac{1}{1.2.3}+\dfrac{6}{2.3.4}-\dfrac{1}{2.3.4}+...+\dfrac{4018}{2008.2009.2010}-\dfrac{1}{2008.2009.2010}\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2008.2010}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2008.2009.2010}\right)\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2007.2009}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2008.2010}\right)-\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2008.2009.2010}\right)\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)-\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}-\dfrac{1}{2009.2010}\right)\)

\(=\left(1-\dfrac{1}{2009}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)-\left(\dfrac{1}{1.2}-\dfrac{1}{2009.2010}\right)\)

\(=1-\dfrac{1}{2009}-\dfrac{1}{2010}+\dfrac{1}{2009.2010}\)

\(=\dfrac{1}{2010}\left(\dfrac{1}{2009}-1\right)-\left(\dfrac{1}{2009}-1\right)\)

\(=\left(\dfrac{1}{2010}-1\right)\left(\dfrac{1}{2009}-1\right)=\dfrac{2009}{2010}.\dfrac{2008}{2009}=\dfrac{1004}{1005}\)

16 tháng 3 2021

câu b bài 2:

\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)

\(=\dfrac{1}{5}\)

câu a bài 2:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)

\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)

14 tháng 5 2023

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)

\(A=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{37.38.39}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{38.39}\right)\)

\(A=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1482}\right)\)

\(A=\dfrac{1}{2}.\dfrac{370}{741}=\dfrac{185}{741}\)

26 tháng 9 2021

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

17 tháng 5 2022

\(2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{98.99.100}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{50.99-1}{100.99}=\dfrac{4949}{9900}\)

17 tháng 5 2022

`A=1/[1.2.3]+1/[2.3.4]+....+1/[98.99.100]`

`A=1/2.(2/[1.2.3]+2/[2.3.4]+....+2/[98.99.100])`

`A=1/2.(1/[1.2]-1/[2.3]+1/[2.3]-1/[3.4]+....+1/[98.99]-1/[99.100])`

`A=1/2.(1/[1.2]-1/[99.100])`

`A=1/2.(1/2-1/9900)`

`A=1/2.(4950/9900-1/9900)`

`A=1/2 . 4949/9900`

`A=4949/19800`