K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

f' (a) =6a +5 -[(2k+1)a^2k +6k a^(2k-1) +(k+1)a^k +3k a^k ]

f'(1) =6+5-[(2k+1)+6k+(k+1) +3k]

f'(1) =11-(12k+2)=9-12k

mình biết lâu rôi (4 tháng)

10 tháng 8 2017

mình cũng chưa hiểu vấn đề này

chỉ biết

\(y=x^{\alpha}\Rightarrow y'=\alpha x^{\alpha-1}\) vì sao nó vậy thực sự mình cũng chẳng biết (cứ chấp nhận nó đúng vậy thôi)

mình cứ cho nó đúng từ đó nội suy ra cái khác

p/s

trước sau gì tìm hiểu sâu để biết --> hiện tai chưa

a: \(A=x^2-10x+25+1\)

\(=\left(x-5\right)^2+1\)

\(=100^2+1=10001\)

b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)

\(=2a^2-8a-10-a^2+10a-25+36\)

\(=a^2+2a+1\)

\(=\left(a+1\right)^2=100^2=10000\)

c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)

d: \(E=a^3+3a^2+3a+1+5\)

\(=\left(a+1\right)^3+5\)

\(=30^3+5=27005\)

11 tháng 6 2023

a) Giả sử 2 tập này có phần tử chung, đặt nó là \(2u+1=2v\) với \(u,v\inℕ\). Khi đó ta có \(1=2v-2u=2\left(v-u\right)\), điều này có nghĩa 1 là số chẵn, vô lí. vậy 2 tập E và O không thể có phần tử chung.

b) \(E=\left\{n\inℕ|n⋮̸2\right\}\) 

    \(O=\left\{n\inℕ|n⋮2\right\}\)

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ... Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)                     ( chứng minh bằng phương pháp quy nạp toán học)Giải: Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .Giả sử (1) đúng với...
Đọc tiếp

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ...

 Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)  

                   ( chứng minh bằng phương pháp quy nạp toán học)

Giải:

 Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .

Giả sử (1) đúng với n=k \(\left(k\in N,k\ge3\right)\) , tức là:

\(2^k>2k+1\)

Ta phải chứng minh \(2^{k+1}>2\left(k+1\right)+1\) hay \(2^{k+1}>2k+3\) (2)

Thật vậy: 

\(2^{k+1}>2.2^k\) , mà \(2^k>2k+1\) (theo giả thiết quy nạp)

Do đó: \(2^{k+1}>2\left(2k+1\right)=\left(2k+3\right)+\left(2k-1\right)>2k+3\) ( Vì 2k-1 > 0 )

Vậy (2) đúng với mọi \(k\ge3\)

 => \(2^n>2n+1\) với mọi số nguyên dương n và \(n\ge3\)

 

 

1
3 tháng 5 2017

sai:2k+1>2.2k

       2k+1=2.2k

sửa lại thì có thể đúng :v

13 tháng 6 2021

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

13 tháng 6 2021

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

12 tháng 9 2021
Iqu6qtqyyw6wywqgqgwh7w7wuwvsvsgr6rhudbydrbyd4yhd4j7d4jcrd
16 tháng 7 2016

a/ \(ab-2b-3a+6=\left(ab-2b\right)-\left(3a-6\right)=b\left(a-2\right)-3\left(a-2\right)=\left(a-2\right)\left(b-3\right)\)

b/ \(ax-by-ay+bx==\left(ax+bx\right)-\left(by+ay\right)=x\left(a+b\right)-y\left(b+a\right)=\left(a+b\right)\left(x-y\right)\)

c/ \(ax+by-ay-bx=\left(ax-ay\right)+\left(by-bx\right)=a\left(x-y\right)+b\left(y-x\right)=a\left(x-y\right)-b\left(x-y\right)=\left(x-y\right)\left(a-b\right)\)

d/ \(a^2-\left(b+c\right)a+bc=a^2-ab-ac+bc=\left(a^2-ac\right)+\left(ab-bc\right)=a\left(a-c\right)+b\left(a-c\right)=\left(a-c\right)\left(a+b\right)\)e/ \(\left(3a-2\right)\left(4a-3\right)-\left(2-3a\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3\right)+\left(3a-2\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3+3a+1\right)=\left(3a-2\right)\left(7a-2\right)\)

f/ \(ax+ay+az-bx-by-bz-x-y-z=\left(ax+ay+az\right)-\left(bx+by+bz\right)-\left(x+y+z\right)\)

\(=a\left(x+y+z\right)-b\left(x+y+z\right)-\left(x+y+z\right)=\left(x+y+z\right)\left(a-b-1\right)\)

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)

Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)

BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.

Ví dụ 1\(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0

Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)

\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)

Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)

Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)

Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng) 

Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*)  với k = 4/3 ta được đpcm. 

Lời giải xin để cho mọi người.

PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487

Ví dụ 2: Cho x,y,z > 0  và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)

Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)

 

4
16 tháng 5 2020

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

17 tháng 5 2020

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà

9 tháng 7 2017

d) \(D=\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)\)

\(=\left(9x^2+24x+16\right)-10x-\left(x^2-16\right)\)

\(=9x^2+24x+16-10x-x^2+16\)

\(=8x^2+14x+32\)

e) \(E=\left(a+1\right)\left(a+2\right)\left(a^2+4\right)\left(a-1\right)\left(a^2+1\right)\left(a-2\right)\)

\(=\left[\left(a+1\right)\left(a+1\right)\right]\left[\left(a+2\right)\left(a-2\right)\right]\left(a^2+4\right)\left(a^2+1\right)\)

\(=\left(a^2-1\right)\left(a^2-4\right)\left(a^2+4\right)\left(a^2+1\right)\)

\(=\left[\left(a^2-1\right)\left(a^2+1\right)\right]\left[\left(a^2-4\right)\left(a^2+4\right)\right]\)

\(=\left(a^4-1\right)\left(a^4-16\right)\)

\(=a^8-16a^4-a^4+16\)

f) \(F=\left(3a+1\right)^2+\left(2-3a\right)\left(2+3a\right)\)

\(=9a^2+6a+1+4-9a^2\)

\(=6a+5\)

9 tháng 7 2017

cam on