K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

\(3n+2⋮n-1\)

\(3\left(n-1\right)+1⋮n-1\)

\(1⋮n-1\)hay \(n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

n - 11-1
n20
11 tháng 12 2016

cậu t đi

11 tháng 12 2016

\(5^{2016}\) ?

27 tháng 10 2021

a. n + 4 \(⋮\) n

\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)

\(⋮\) n 

\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}

\(\Rightarrow\) n \(\in\) {1; 2; 4}

27 tháng 10 2021

b. 3n + 11 \(⋮\) n + 2

3n + 6 + 5 \(⋮\) n + 2

3(n + 2) + 5 \(⋮\) n + 2

\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{​​}⋮n+2\\5⋮n+2\end{matrix}\right.\)

\(\Rightarrow\) 5 \(⋮\) n + 2

\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}

n + 215
nvô lí3

\(\Rightarrow\) n = 3

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

21 tháng 12 2016

a,

Theo bài ra ta có: 2n +5 chia hết cho n+2

Mà 2n chia hết cho n

Suy ra:  ( 2n +5)- 2(n+2)   chia hết cho n+2

            2n +5 - 2n-2        chia hết cho n+2

           3                        chia hết cho n+2

Suy ra: n+2 thuộc Ư(3) = { 1,3}

Ta có :

n+2=1 ( phép tính ko thực hiện được)

n+2=3 vậy n=1

Vậy ta có số tự nhiên n là 1

2 tháng 12 2017

b) ( 2n + 9 ) chia hết cho ( n + 1 )

=> 2n + 2  + 7 chia hết cho ( n + 1 )

=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )

=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }

Vậy n thuộc { 1 , 7 }

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}