K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

e, \(E=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(E\ge\left|x-1+3-x\right|=\left|2\right|=2\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\3-x\ge0\end{matrix}\right.\Rightarrow1\le x\le3\)

Vậy \(MIN_E=2\) khi \(1\le x\le3\)

f, \(F=\sqrt{x+9-6\sqrt{x}}+\sqrt{x+1-2\sqrt{x}}\)

\(=\sqrt{\left(\sqrt{x}-3\right)^2}+\sqrt{\left(\sqrt{x}-1\right)^2}\)

\(=\left|\sqrt{x}-3\right|+\left|\sqrt{x}-1\right|=\left|3-\sqrt{x}\right|+\left|\sqrt{x}-1\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(F\ge\left|3-\sqrt{x}+\sqrt{x}-1\right|=\left|2\right|=2\)

Dấu " = " khi \(\left\{{}\begin{matrix}3-\sqrt{x}\ge0\\\sqrt{x}-1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le\sqrt{3}\\x\ge1\end{matrix}\right.\)

Vậy \(MIN_F=2\) khi \(1\le x\le\sqrt{3}\)

16 tháng 10 2017

\(a,x^2+2x+7\)

\(=x^2+2x+1+6\)

\(=\left(x+1\right)^2+6\)

\(V\text{ì}\left(x+1\right)^2\ge0\)

\(\left(x+1\right)^2+6\ge0+6\)

\(\left(x+1\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy MinA=6 khi x=-1

b) \(x^2+x+1\)

\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(x=\dfrac{1}{2}\)

16 tháng 10 2017

Bn tự lm theo phom đó rồi kết luận nhé. Mỏi tay ghê

23 tháng 10 2017

ta gọi 

ab=0,5 (a+b)

​​\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} ax+bx=67 kết quả =67\)

a) A= x^2 - 6x + 5

A=x^2-6x+9-4

A=(x-3)^2-4>hoặc= -4

Pmin =-4 <=> x-3=0 <=> x=3

P/s máy mình lag nên ko sủ dụng được cồn thức

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

18 tháng 1 2021

Có điều kiện không bạn.

28 tháng 6 2017

M= \(x^2-3x+5=x^2-2\times\frac{3}{2}\times x+\frac{9}{4}-\frac{9}{4}+5\)

M =   \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

Vì \(\left(x-\frac{3}{3}\right)^2\ge0\)

=> \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy MIN  M = \(\frac{11}{4}\)dấu bằng xảy ra khi và chỉ khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

28 tháng 6 2017

\(M=x^2-3x+5=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+5-\frac{9}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy \(MinM=\frac{11}{4}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)