Cho hình chữ nhật ABCD. Gọi K, L tương ứng là trung điểm các cạnh BC và DA. Trên cạnh CD kéo dài về phía D lấy điểm M bất kì, đường thẳng ML cắt AC tại N. CMR: \(\dfrac{KM}{KN}=\dfrac{ML}{LN}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Hình đây nha bạn
Bạn hãy sử dụng tính chất của hình vuông nha
Study well
Xét ΔABC có
M∈AB(gt)
N∈AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)
Do đó: MN//BC(Định lí Ta lét đảo)
Suy ra: MK//BI và NK//CI
Xét ΔABI có
M∈AB(gt)
K∈AI(gt)
MK//BI(Gt)
Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔACI có
K∈AI(gt)
N∈AC(gt)
KN//IC(cmt)
Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)
mà BI=CI(I là trung điểm của BC)
nên MK=NK(đpcm)
1. Lớp 8 chưa học tứ giác nội tiếp nên có thể CM như sau:
Xét tam giác $KAB$ và $KCH$ có:
$\widehat{K}$ chung
$\widehat{KBA}=\widehat{KHC}=90^0$
$\Rightarrow \triangle KAB\sim \triangle KCH$ (g.g)
$\Rightarrow \frac{KA}{KC}=\frac{KB}{KH}\Rightarrow KA.KH=KB.KC$
Xét tam giác $KAC$ có $AB,CH$ là 2 đường cao giao nhau tại $M$ nên $M$ là trực tâm tam giác $KAC$
$\Rightarrow KM\perp AC$. Mà $AC\perp BD$ nên $KM\parallel BD$.
2.
$OE\parallel DC$ nên theo định lý Talet:
$\frac{OF}{FC}=\frac{OE}{DC}$
Mà $OE=OC$ (như bạn Phan Linh Nhi đã cm) nên $\frac{OF}{FC}=\frac{OC}{DC}=\frac{\sqrt{2}}{2}$ (do $ODC$ là tam giác vuông cân tại $O$)
Đề sai.
Theo định lý Talet: $\frac{LM}{LN}=\frac{AL}{LD}=1$
Tuy nhiên, không có cơ sở để khẳng định $\frac{KM}{KN}=1$ (xem hình vẽ)
ML cắt AC tại N, không phải cắt AB ạ.