Cho pt : \(\dfrac{4x^2}{x^4+2x^2+1}-\dfrac{2x\left(2m-1\right)}{x^2+1}+m^2-m-6=0\)
Tìm m để pt có ít nhất 1 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
\(\Delta=\left(m-1\right)^2+8\left(m+1\right)=\left(m+3\right)^2\ge0;\forall x\Rightarrow\) pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m-1}{2}\\x_1x_2=-\dfrac{m+1}{2}\end{matrix}\right.\)
\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{25}{16}\Leftrightarrow\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{25}{16}\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{25}{16}\left(x_1x_2\right)^2\)
\(\Rightarrow\left(\dfrac{m-1}{2}\right)^2+\dfrac{2\left(m+1\right)}{2}=\dfrac{25}{16}\left(\dfrac{m+1}{2}\right)^2\)
\(\Rightarrow9m^2+18m-55=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-\dfrac{11}{3}\end{matrix}\right.\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
Đặt \(x^2=t\) \(\Rightarrow t^2+\left(1-m\right)t+2m-2=0\) (1)
Pt đã cho có 4 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(1-m\right)^2-8\left(m-1\right)>0\\t_1+t_2=m-1>0\\t_1t_2=2m-2>0\end{matrix}\right.\) \(\Rightarrow m>9\)
Khi đó, do vai trò của \(x_1;x_2;x_3;x_4\) như nhau, ko mất tính tổng quát, giả sử \(x_1=-\sqrt{t_1};x_2=\sqrt{t_1}\) ; \(x_3=-\sqrt{t_2};x_4=\sqrt{t_2}\)
\(\Rightarrow x_1x_2x_3x_4=t_1t_2\) ; \(x_1^2=x_2^2=t_1\) ; \(x_3^2=x_4^2=t_2\)
\(\Rightarrow\dfrac{x_1x_2x_3x_4}{2x_4^2}+\dfrac{x_1x_2x_3x_4}{2x_3^2}+\dfrac{x_1x_2x_3x_4}{2x_2^2}+\dfrac{x_1x_2x_3x_4}{2x_1^2}=2017\)
\(\Leftrightarrow\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_1}+\dfrac{t_1t_2}{2t_1}=2017\)
\(\Leftrightarrow t_1+t_2=2017\)
\(\Leftrightarrow m-1=2017\Rightarrow m=2018\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
\(\left(x+\dfrac{1}{x}\right)^2-2m\left(x+\dfrac{1}{x}\right)-1=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\Rightarrow t^2-2mt-1=0\) (1)
Pt đã cho có nghiệm khi (1) có ít nhất 1 nghiệm thỏa \(\left|t\right|\ge2\)
Để (1) có 2 nghiệm đều thuộc \(\left(-2;2\right)\) thì:
\(\left\{{}\begin{matrix}f\left(-2\right)=3+4m>0\\f\left(2\right)=3-4m>0\\-2< \dfrac{t_1+t_2}{2}=m< 2\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{3}{4}< m< \dfrac{3}{4}\)
Vậy để pt có nghiệm thì \(\left[{}\begin{matrix}m\ge\dfrac{3}{4}\\m\le-\dfrac{3}{4}\end{matrix}\right.\)
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)