Giải pt, tìm x theo a, b (a > 0, b > 0)
\(\sqrt{a+b\sqrt{1-x}}=1+\sqrt{a-b\sqrt{1-x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)
\(\Leftrightarrow7\left|x-1\right|=35\)
\(\Leftrightarrow\left|x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)
c) ĐKXĐ: \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(\Leftrightarrow x-1=x+\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-6=-1\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25(nhận)
a.
\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:
\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)
\(\Leftrightarrow3a^2=b^2\)
\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)
\(\Leftrightarrow...\)
b.
\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
Lặp lại cách làm câu a
Lời giải:
a. ĐKXĐ: $x>1$
\(B=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}=x+\sqrt{x^2-1}\)
b.
\(B=\frac{a^2+b^2}{2ab}+\sqrt{\frac{a^2+2ab+b^2}{2ab}.\frac{a^2-2ab+b^2}{2ab}}\)
\(=\frac{a^2+b^2}{2ab}+\sqrt{\frac{(a+b)^2(a-b)^2}{(2ab)^2}}=\frac{a^2+b^2}{2ab}+\frac{|a-b||a+b|}{|2ab|}=\frac{a^2+b^2}{2ab}+\frac{a^2-b^2}{2ab}=\frac{a}{b}\)
c.
$B\leq 1\Leftrightarrow (x-1)+\sqrt{x^2-1}\leq 0$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-1}+\sqrt{x+1})\leq 0$
$\Leftrightarrow \sqrt{x-1}\leq 0$
Mà $\sqrt{x-1}>0$ với mọi $x<1$ nên điều này vô lý)
Vậy không tồn tại $x$ thỏa đkđb
d.
$B=2\Leftrightarrow x+\sqrt{x^2-1}=2$
$\Leftrightarrow \sqrt{x^2-1}=2-x$
\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ x^2-1=(2-x)^2=x^2-4x+4\end{matrix}\right.\)
\(\Rightarrow x=\frac{5}{4}\)
Thử lại thấy thỏa mãn
Vậy......
Câu b bạn sửa lại đề
\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)
a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
Mình cũng đang tìm câu hỏi như vậy. Ai biết làm giúp với
Bài 1 :
a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)
\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)
\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)
\(A=\sqrt{7}-\sqrt{28}\)
\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)
Vậy \(A=-\sqrt{7}\)
b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)
\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)
\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(B=a-b\)
Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)
_Minh ngụy_
Bài 2 :
a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))
Vậy \(x>1\)thì \(B>0\)
_Minh ngụy_
Giải:
Đặt \(y=b\sqrt{1-x}\)
Ta có: \(\sqrt{a+y}=1+\sqrt{a-y}\)
\(\Leftrightarrow\sqrt{a+y}-\sqrt{a-y}=1\)
\(\Leftrightarrow\left(\sqrt{a+y}-\sqrt{a-y}\right)^2=1\)
\(\Leftrightarrow a+y-2\cdot\sqrt{a+y}\cdot\sqrt{a-y}+a-y=1\)
\(\Leftrightarrow2a-2\sqrt{a^2-y^2}=1\)
\(\Leftrightarrow2\sqrt{a^2-y^2}=2a-1\)
\(\Leftrightarrow\sqrt{a^2-y^2}=\dfrac{2\left(a-\dfrac{1}{2}\right)}{2}=a-\dfrac{1}{2}\)
\(\Leftrightarrow a^2-y^2=\left(a-\dfrac{1}{2}\right)^2=a^2-a+\dfrac{1}{4}\)
\(\Leftrightarrow y^2=a-\dfrac{1}{4}\)
\(\Leftrightarrow y=\sqrt{a-\dfrac{1}{4}}\)
\(\Leftrightarrow b\sqrt{1-x}=\sqrt{a-\dfrac{1}{4}}\)
\(\Leftrightarrow\sqrt{1-x}=\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\)
\(\Leftrightarrow1-x=\left(\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\right)^2\)
\(\Leftrightarrow x=1-\left(\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\right)^2\)
Vậy....................