K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\dfrac{a}{b}=\dfrac{3a}{3b}\) ; \(\dfrac{c}{d}=\dfrac{2c}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{3a+2c}{3b+2d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)

24 tháng 7 2017

bạn ko làm hộ tớ phần b ơ

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

10 tháng 12 2021

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>a=bk; c=dk

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

\(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)

Do đó: a/b=3a+2c/3b+2d

25 tháng 9 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)

\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)

*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)

25 tháng 9 2017

Làm lại lun ._.

9 tháng 10 2018

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}\) (1)

Lại có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}=\dfrac{2c^2}{2d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2c^2-ac}{2d^2-bd}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\).

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

29 tháng 3 2017

Ta có:

a/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\)

b/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{-2a}{-2b}=\dfrac{7c}{7d}=\dfrac{-2a+7c}{-2b+7d}\)

PS: Xong

29 tháng 3 2017

Y chang câu mới giải nhé