Cho a và b là các số tự nhiên.Chứng minh rằng:
a)Nếu a+b chia hết cho 7 thì a+8b cũng chia hết cho 7
b)Nếu a-4b chia hết cho 11 thì 12a+7b cũng chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chép ở đâu z bạn o0o đồ khùng o0o
tớ bít nè chắc ở SKTS_BFON
chép nhận tk đúng ko
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chúc năm mới hạnh phúc. k nha.
Thông ơi ! Bạn và mk 1 đề nè
Đó là bài 5 đúng không
Khảo sát chất lượng học kì I huyện Can Lộc
Nếu đúng thì k mk nha
Hihi
^_^
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
Ta có: 3a + 4b + 5c chia hết cho 11
=> 12a + 16b + 20c chia hết cho 11
=> 12a + 11b + 5b + 22c - c
=> 12a + 5b - 2c chia hết cho 11 (vì 11b chia hết cho 11 và 22c chia hết cho 11)
Vậy: 12a + 5b - 2c chia hết cho 11
=> ĐPCM
gọi ab là xy
6x+11y chia hế
31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿
=> 6x + 42y chia hết cho 31
=> 6﴾x+7y﴿ chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên
x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)