cho tam giac abc can tai a cos goc a <90 do, duong cao ce ,bd cat nhau tai h
cmr a)tam giac abd=tam giac ace
b. ah laf trung truc cua bc
c.bc//de
d.ah cắt bc tại i trên tia đối ih lấy điểm k sao cho hi=kì.cm tam giác ack vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giac ABC can tai A
=>\(\widehat{B}=\widehat{C}=\dfrac{180-\widehat{A}}{2}=\dfrac{180-80}{2}=50^0\)
tam giac DEF can tai D
\(=>\widehat{D}=180-\left(\widehat{E}+\widehat{F}\right)\)
mà E = F =50o( do tam giac DEF can tai D_
\(=>\widehat{D}=180-\left(50+50\right)=80^o\)
=>\(\text{ ΔABC∼ΔDEF}\)
\(\widehat{D}=180^0-2\cdot50^0=80^0\)
=>ΔABC\(\sim\)ΔDEF
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)
Ta có : \(\Delta ABC\) cân tại \(A\) \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{cases}}\) ( tính chất ) (1)
Lại có : \(\widehat{ABD}=\widehat{ABC}+\widehat{CBD}=90^o\) (2)
\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=90^o\) (3)
Từ (1) , (2) và (3) \(\Rightarrow\widehat{CBD=}\widehat{BCD}\)
Xét \(\Delta DBC\) có \(\widehat{CBD=}\widehat{BCD}\) (cmt)
\(\Rightarrow\Delta DBC\) cân tại \(D\) (đpcm)
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB (1)
Ta có: AB = AC, mà M và N lần lượt là trung điểm của AC và AB => AN = NB = AM = MC
Xét tgiac BNC và CMB có:
+ BN = MC
+ BC chung
+ góc NBC = MCB
=> Tgiac BNC = CMB (c-g-c)
Xét tgiac ABM và ACN có:
+ AM = AN
+ AB = AC
+ chung góc A
=> Tgiac ABM = ACN (c-g-c)
=> góc ABM = ACN
(1) => góc ABC - ABM = ACB - ACN
=> góc KBC = KCB
=> Tgiac KBC cân tại K
=> \(\widehat{BKC}=180^o-2.\widehat{KBC}\)(vì góc KBC = KCB)
Tgiac ABC cân tại A, có góc A = 60o => ABC là tgiac đều
Mà M là trung điểm AC => BM là đg cao tgiac ABC
=> góc AMC = 90o
Do tổng 3 góc trong 1 tgiac là 180o
=> góc KBC (MBC) = 180o - 90o - 60o = 30o
Vậy góc BKC = 180o - 2.30o = 120o
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đo: ΔABD=ΔACE
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
ai giup mik nha mik tich cho
Ta có hình vẽ:
a/ Xét hai tam giác vuông ABD và ACE có:
AB = AC (tam giác ABC cân tại A)
A: góc chung
=> tam giác ABD = tam giác ACE.
b/ Ta có: BD và CE là đường cao của tam giác ABC
Mà BD cắt CE tại H
=> H là trực tâm của tam giác ABC
=> AH là đường cao còn lại của tam giác ABC
Vì tam giác ABC cân
Nên AH cũng là đường trung trực của BC.
c/ Ta có: tam giác ABD = tam giác ACE (Cmt)
=> AD = AE (hai cạnh t/ư)
=> tam giác ADE cân tại A
=> góc ADE = góc AED.
Ta có: \(\widehat{ADE}+\widehat{AED}+\widehat{A}=180^0\)
hay \(2.\widehat{ADE}=180^0-\widehat{A}\) (Vì \(\widehat{ADE}=\widehat{AED}\) )
=> \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)
Ta có: tam giác ABC cân tại A
=> góc B = góc C.
Ta có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
hay \(2.\widehat{ACB}=180^0-\widehat{A}\) (Vì \(\widehat{ABC}=\widehat{ACB}\))
=> \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)
Ta có: \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)
và \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)
=> \(\widehat{ADE}=\widehat{ACB}\)
Mà hai góc này ở vị trí slt
=> DE // BC (đpcm).