Rút gọn:\(a,\sqrt{\left(x+2\sqrt{x+1}\right)\left(x+3+4\sqrt{x-1}\right)}\left(x>1\right)\)
\(b,\sqrt{\left(a^2+b^2+c^2+2\left(ab+bc+ac\right)\right)\left(a+b-2\sqrt{ab}\right)}\)
\(c,\dfrac{2+a-2\sqrt{a}}{3+a-3\sqrt{a}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{matrix}\right.\) \(\Rightarrow2=a^2+b^2\)
\(A=\dfrac{\sqrt{1-ab}\left(a^3+b^3\right)}{a^2+b^2-ab}=\dfrac{\sqrt{\dfrac{2}{2}-ab}\left(a+b\right)\left(a^2+b^2-ab\right)}{a^2+b^2-ab}\)
\(=\sqrt{\dfrac{a^2+b^2}{2}-ab}\left(a+b\right)=\left(a+b\right)\sqrt{\dfrac{\left(a-b\right)^2}{2}}=\dfrac{\left|a-b\right|\left(a+b\right)}{\sqrt{2}}\)
\(=\pm\dfrac{a^2-b^2}{\sqrt{2}}=\pm\dfrac{2x}{\sqrt{2}}=\pm\sqrt{2}x\)
b.
\(A\ge\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}\sqrt{2}x\ge\dfrac{1}{2}\left(x\ge0\right)\\-\sqrt{2}x\ge\dfrac{1}{2}\left(x\le0\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{\sqrt{2}}{4}\\x\le-\dfrac{\sqrt{2}}{4}\end{matrix}\right.\)
Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}\dfrac{\sqrt{2}}{4}\le x\le1\\-1\le x\le-\dfrac{\sqrt{2}}{4}\end{matrix}\right.\)
\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3x+6\sqrt{x}-\left(x-1\right)\)
\(=3x+6\sqrt{x}-x+1\)
\(=2x+6\sqrt{x}+1\)
\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)
\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)
\(=-x+8\sqrt{x}+1\)
\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)
\(=3x-3\sqrt{x}-2+x-1\)
\(=4x-3\sqrt{x}-3\)
\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=x-9-\left(2x-3\sqrt{x}-2\right)\)
\(=x-9-2x+3\sqrt{x}+2\)
\(=-x+3\sqrt{x}-7\)
\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)
\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)
\(=x-4-4x-6\sqrt{x}+4\)
\(=-3-6\sqrt{x}\)
a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{2}{3}\)