GIÚP MIK LM TEST 5 VS MN!! CẦN GẤP !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2x^2\left(3xy+x^2-2y^2\right)\)
\(=6x^3y+2x^4-4x^2y^2\)
b: \(\dfrac{1}{3}x^2y^3\left(2x-3y+1\right)\)
\(=\dfrac{2}{3}x^3y^3-x^2y^4+\dfrac{1}{3}x^2y^3\)
h: \(\left(x-1\right)\left(x+1\right)\left(2x-3\right)\)
\(=\left(x^2-1\right)\left(2x-3\right)\)
\(=2x^3-3x^2-2x+3\)
Câu 6
a) Ta có: \(\widehat{A}=90^0\) ⇒a⊥c
a//b, a⊥c ⇒b⊥c
b) Ta lại có: M1+N1=1800(trong cùng phía)
1200+N1=1800
N1=1800-1200=600
\(M=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\left|2-\sqrt{5}\right|}-\dfrac{2}{\left|2+\sqrt{5}\right|}\)
\(=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
\(=\dfrac{8}{1}=8\)
Lm ơn giúp mik đii mà mik bt ơn bn đó nhiều lắm . Mik đang rất cần
Gợi ý cho em các ý:
Mở bài: Nêu lên vấn đề cần bàn luận: (Ví dụ: Quê hương em là một vùng quê yên bình ở đồng bằng Bắc Bộ với những cánh đồng lúa bát ngát thẳng cánh cò bay...)
Thân bài:
Giới thiệu khái quát về quê hương em:
+ Quê em gồm có những cảnh đẹp nào?
+ Khí hậu?
+ Đặc trưng, đặc sản ở quê em?
+ Con người ở quê hương em như thế nào?
- Cảm nhận của em về quê hương em:
Ví dụ: Em cảm thấy tự hào khi được sinh ra và lớn lên ở mảnh đất bình yên này...
Kết bài.
Khẳng định lại vấn đề
_mingnguyet.hoc24_
\(a,\dfrac{11x}{2x-5}+\dfrac{x-30}{2x-5}=\dfrac{11x+x-30}{2x-5}=\dfrac{12x-30}{2x-5}=\dfrac{6\left(2x-5\right)}{2x-5}=6\)
\(b,\dfrac{3x^2-1}{2x}+\dfrac{x^2+1}{2x}=\dfrac{3x^2-1+x^2+1}{2x}=\dfrac{4x^2}{2x}=2x\)
\(c,\dfrac{3}{2x-5}+\dfrac{-2}{2x+5}+\dfrac{-20}{4x^2-25}=\dfrac{3\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{2\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{6x+15-4x+10-20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{2x+5}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{1}{2x-5}\)
\(d,\dfrac{x-2}{x-1}+\dfrac{x-3}{x+1}+\dfrac{4-2x^2}{x^2-1}=\dfrac{\left(x-2\right)\left(x+1\right)+\left(x-3\right)\left(x-1\right)+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+x-2+x^2-3x-x+3+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5}{x-1}\)
\(e,\dfrac{x+1}{x-1}+\dfrac{1-x}{x+1}+\dfrac{4}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2x+1-x^2+2x-1+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)