Cho khối chóp S.ABC có thể tích bằng a 3/2 ,tam giác SAC đều cạnh 2a.tính k/c từ B đến mặt phẳng SAC
Ban nao biết giúp minh với... HELP......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
B C = A B . tan 30 0 = a 3 3 ⇒ A C = a 2 3 + a 2 = 2 3 3 a V = 1 3 . S A . 1 2 . A B . B C = 1 3 . S A . 1 2 . a . a 3 3 = a 3 3 36 ⇒ S A = a 2 S B = a 2 4 + a 2 = a 5 2 V = 1 3 . d ( A ; S B C ) . 1 2 . S B . B C = 1 3 . d . 1 2 . a 5 2 . a 3 3 = a 3 3 36 ⇒ d = a 5 5
Phương pháp:
Sử dụng kiến thức để tìm chiều cao của hình chóp
Sử dụng công thức tính diện tích tam giác đều cạnh a là S = a 2 3 4
Sử dụng công thức tính thể tích khối chóp V = 1 3 S.h với S là diện tích đáy và h là chiều cao hình chóp.
Cách giải:
Từ đề bài ta có
Vì tam giác đều cạnh a và AB = AC = BC = a.
Tam giác vuông tại A (do SA ⊥ (ABC) => SA ⊥ AC) nên theo định lý Pytago ta có
Thể tích khối chóp là
Chọn B
Chọn A.
Ta có:
( S A B ) ⊥ ( A B C ) ( S A C ) ⊥ ( A B C ) ( S A B ) ∩ ( S A C ) = S A ⇒ S A ⊥ ( A B C )
S A B C = a 2 3 4 , S A = a 2
Vậy thể tích khối chóp V A B C = a 3 6 12