1) cho x+2y=4 Tìm a, Max của M với M= xy
b, Min của N với N= x2 +y2
2, Cho a, b \(\ge\)0 . CMR a, \(\dfrac{a^2+b^2}{2}\)\(\ge\)\(\left(\dfrac{a+b}{2}\right)^{^{ }2}\)
b. \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
c., a3 + b3 \(\ge\) ab(a+b)
mọi người ơi mn giúp mk với mk đg cần gấp ạ
2)a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c)\(a^3+b^3-a^2b-ab^2=a^2\left(a-b\right)-b^2\left(a-b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\\ \Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
b)\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3a^b+3ab^2\\ \Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
\(x+2y=4\Leftrightarrow x=4-2y\)
\(\Rightarrow xy=y\left(4-2y\right)=-2y^2+4y=-2\left(y-1\right)^2+2\le2\)
Vậy max M là 2 khi y=1, x= 2
2)Tương tự