Tìm n mỗi phép tính sau là phép chia hết (n là số tự nhiên)
a) \(( 5x^3 - 7x^2 + x) : 3x^n\)
b) \((13x^4y^3 - 5x^3y^3 + 6x^2y^2) : 5x^ny^n\)
HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)
Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó :
\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)
\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)
\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)
Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)
\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)
Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó :
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)
\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)
Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)
Chúc bạn học tốt ~
a) Để \((5x^3-7x^2+x)\) chia hết cho \(3x^n \)
=> \(5x^3;7x^2;x\) phải chia hết cho \(3x^n\)
mà n là số tự nhiên; \(x\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
b) Để \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\)
=> \(13x^4y^3;5x^3y^3;6x^2y^2\) chia hết cho \(5x^ny^n\)
mà n là số nguyên; \(6x^2y^2\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
- \(A⋮B\Leftrightarrow\left[{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le3\\n\le2\\n\le1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2\\n=0;1\end{matrix}\right.\Leftrightarrow n=0;1\)
-\(A⋮B\Leftrightarrow\left[{}\begin{matrix}13x^4y^3⋮5x^ny^n\\-5x^3y^3⋮5x^ny^n\\6x^2y^2⋮5x^ny^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le4;n\le3\\n\le3\\n\le2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2;3\\n=0;1;2\end{matrix}\right.\Leftrightarrow n=0;1;2\)
cho mình hỏi tại sao có 2 lớn hơn hoặc bằng n
1 lớn hơn hoặc bằng n ? ko hiểu