Cho 3x=4y Tính H=2xy+3x2 /3xy+4y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P - Q + R =(2x2 - 3xy + 4y2) - (3x2 + 4xy -y2) + (x2 +2xy +3y2)
= 2x2 - 3xy + 4y2 - 3x2 - 4xy + y2 + x2 + 2xy + 3y2
=(2x2 - 3x2 + x2) + ( -3xy - 4xy +2xy) + (4y2 + y2 +3y2)
= -5xy + 8y2
Vậy P - Q + R = - 5xy + 8y2
Bài 5:
\(P-Q+R=\) \(\left(2x^2-3xy+4y^2\right)-\left(3x^2+4xy-y^2\right)+\left(x^2+xy+3y^2\right)\)
\(P-Q+R=\) \(2x^2-3xy+4y^2-3x^2-4xy+y^2+x^2+xy+3y^2\)
\(P-Q-R=\) \(\left(2x^2-3x^2+x^2\right)+\left(-3xy-4xy+2xy\right)+\left(4y^2+y^2+2y^2\right)\)
\(P-Q-R=\) \(0-5xy+7y^2\)
Vậy \(P-Q-R=\) \(-5xy+7y^2\)
a) M - \(^{\left(x^2y-1\right)}\)= -2\(x^3\)+\(x^2y\)+1
=> M= (-2\(x^3\)+\(x^2y\)+1) + \(^{\left(x^2y-1\right)}\)
=> M= -2\(x^3\)+\(x^2y\)+1+ \(^{x^2y-1}\)
=> M= -2\(x^3\)+(\(x^2y+x^2y\))+1-1
=> M= -2\(x^3\)+\(2x^2y\)
b) \(3x^2+3xy-3x^3-M=3x^2+2xy-4y^2\)
=> \(M=\left(3x^2+3xy-3x^3\right)-\left(3x^2+2xy-4y^2\right)\)
\(=>M=3x^2+3xy-3x^3-3x^2-2xy+4y^2\)
\(=>M=\left(3x^2-3x^2\right)+\left(3xy-2xy\right)-3x^3+4y^2\)
\(=>M=xy-3x^3+4y^2\)
Hơi muộn nhưng mong bạn tick cho mình
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
\(l,=5x\left(y^2-2yz+5z\right)\\ m,=\left(x+1\right)^3-27y^3\\ =\left(x+1-3y\right)\left(x^2+2x+1+3xy+3y+9y^2\right)\\ n,=\left(x-3y\right)^2\\ o,=\left(x+2y\right)^3\\ p,=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\\ q,=\left(x+2y\right)^2-2\left(x-2y\right)+1\\ =\left(x+2y-1\right)^2\)
3x=4y
nên x/4=y/3
Đặt x/4=y/3=k
=>x=4k; y=3k
\(H=\dfrac{2xy+3x^2}{3xy+4y^2}=\dfrac{2\cdot4k\cdot3k+3\cdot16k^2}{3\cdot4k\cdot3k+4\cdot9k^2}\)
\(=\dfrac{24k^2+48k^2}{36k^2+36k^2}=1\)