Cho M = \(\dfrac{1}{4}-\dfrac{2}{4^2}+\dfrac{3}{4^3}-\dfrac{4}{4^4}+...+\dfrac{2015}{4^{2015}}-\dfrac{2016}{4^{2016}}\)
Chứng minh rằng : \(M< \dfrac{4}{25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi thiếu đề rồi, cái biểu thức này không tính được đâu , mình nghĩ thế
Lời giải:
Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)
\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)
\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)
\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)
--------------------------
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)
\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)
\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)
\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)
\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)
Vậy ta có đpcm.
Trong dấu ngoặc đơn có số các số hạng là
Đặt tổng các số hạng trong ngoặc đơn là A
\(\dfrac{2013-1}{2}+1=1007\) số hạng
\(A=\dfrac{3+1}{1.3}-\dfrac{5+3}{3.5}+\dfrac{7+5}{5.7}-...+\dfrac{2015+2013}{2013.2015}=\)
\(=1+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}-...+\dfrac{1}{2013}+\dfrac{1}{2015}=1+\dfrac{1}{2015}=\dfrac{2016}{2015}\)
\(\Rightarrow M=A.\dfrac{2015}{2016}=\dfrac{2016}{2015}.\dfrac{2015}{2016}=1\) là số tự nhiên
Ta có:
\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)
\(=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)
\(=1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{1}{2016}\right)\)
\(=\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2016}+\dfrac{2017}{2017}\)
\(=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
Do đó: \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\right)}=\dfrac{1}{2017}\)
Vậy...
\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)
\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)
\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)
\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Vậy \(\dfrac{B}{A}=2017\)
Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)
Khi đó phương trình trở thành:
\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)
Tick plz
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Rightarrow\dfrac{x-1}{2017}+\dfrac{x-2}{2016}-\dfrac{x-3}{2015}-\dfrac{x-4}{2014}=0\)
\(\Rightarrow\dfrac{x-1}{2017}-1+\dfrac{x-2}{2016}-1-\dfrac{x-3}{2015}+1-\dfrac{x-4}{2014}+1=0\)
\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)-\left(\dfrac{x-3}{2015}-1\right)-\left(\dfrac{x-4}{2014}-1\right)=0\)
\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Rightarrow x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Để \(x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
\(\Rightarrow x-2018=0\)
\(x=2018\)
Ta có :
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\) ( trừ 2 vế cho 2 )
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Nên \(x-2018=0\)
\(\Rightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
Lời giải:
Có \(M=\left ( \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \right )-\left ( \frac{2}{4^2}+\frac{4}{4^4}+...+\frac{2016}{4^{2016}} \right )=A-B\)
Xét \(A= \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \Rightarrow 16A=4+\frac{3}{4}+\frac{5}{4^3}+...+\frac{2015}{4^{2013}}\)
\(\Rightarrow 15A=4+2\underbrace{\left ( \frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2013}} \right )}_{T}-\frac{2015}{4^{2015}}\)
Lại có \(16T=4+\frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2011}}\Rightarrow 15T=4-\frac{1}{4^{2013}}\)
Do đó \(A=\frac{1}{15}\left ( 4+\frac{8}{15}-\frac{2}{15.4^{2013}}-\frac{2015}{4^{2015}} \right )\)
Thực hiện tương tự, suy ra
\(B=\frac{1}{15}\left ( 2+\frac{2}{15}-\frac{2}{15.4^{2014}}-\frac{2016}{4^{2016}} \right )\)
\(\Rightarrow M=A-B=\frac{1}{15}\left ( \frac{12}{5}-\frac{90692}{15.4^{2014}} \right )<\frac{1}{15}.\frac{12}{5}=\frac{4}{25}\)
Ta có đpcm