K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3B-B=1-\frac{1}{3^{99}}\)

\(B=\frac{1-\frac{1}{3^{99}}}{2}\)

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)

\(3A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

Chúc bạn học tốt ~ 

14 tháng 3 2020

a,

A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99 

=1−(3+5+7+...+99)=1−(3+5+7+...+99)

=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498

b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98

c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99

\(B=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)

\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)

\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{16+15}=\dfrac{2}{3}\)