Cho các số x, y thỏa mãn đẳng thức sau \(5x^2+5y^2+8xy-2x+2y+2=0\) tính giá trị của biểu thức M = \(\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
\(5x^2+5y^2+8xy+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)
\(\Rightarrow x=-1;y=1\)
Khi đó:
\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)
\(=1\)
mk ko vt lại đề
=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
...... phần này bn tự làm đc
=>x=1,y=-1
thay vào là dc
Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)
=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\) , \(\left(x-1\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)
Thay vào M ta có:
\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)
Thay x = 1; y = -1; x + y = 0 vào M ta được:
M = 0 + (1 + 2)2008 + ( - 1 + 1)2009
= 0 + 32008 + 0 = 32008
Ta có\(5x^2+5y^2+8xy-2x+2y+2=0\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
<=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
mà \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}4\left(x+y\right)^2+\left(y+1\right)^2+\left(x-1\right)^2\ge0\)
dâu = xảy ra <=>\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
rồi bạn thay vào và tự tính M nhé !
^_^
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left\{{}\begin{matrix}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\)
Ta có: \(M=\left(x+y\right)^{2017}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(=\left(-1\right)^{2008}=1\)
Vậy M = 1