1, chứng minh biểu thức sau đây không phụ thuộc vào biến x
( x + 5 ) ( 2x + 3 ) - 2x ( x - 3 ) + ( x + 7 )
2, rút gọn biểu thức \(\dfrac{x^2}{xy+x}+\dfrac{y}{y^2-1}-\dfrac{x}{x\left(y-1\right)}\)
3, tìm x: 2 ( x + 5 ) - \(x^2\)- 5x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)
Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`
`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`
`=(y(y-2x))/3`
`b,(x^2-y^2)/(x^2-y^2+xz-yz)`
`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`
`=(x+y)/(x+y+z)`
`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`
`=(-(x^2-3x+x-3))/((x-1)(x+1))`
`=(-x(x-3)+x-3)/((x-1)(x+1))`
`=((x-3)(1-x))/((x-1)(x+1))`
`=(3-x)/(1+x)`
`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`
`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`
`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`
`=(3x^2-4x+1)/(2x^2+x-3)`
`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`
`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`
`=(3x-1)/(2x+3)`
a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)
\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)
\(=\dfrac{y\left(y-2x\right)}{3}\)
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
Sửa đề: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)
Ta có: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}+\dfrac{4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}:\dfrac{2y}{x-y}\)
\(=\dfrac{4y\left(y+x\right)}{2\left(x-y\right)\left(y+x\right)}\cdot\dfrac{x-y}{2y}\)
\(=1\)
1,sai đề
2, \(\dfrac{x^2}{xy+x}+\dfrac{y}{y^2-1}-\dfrac{x}{x\left(y-1\right)}\)
\(=\dfrac{x^2}{x\left(y+1\right)}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}-\dfrac{x}{x\left(y-1\right)}\)
\(=\dfrac{x}{y+1}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}-\dfrac{1}{y-1}\)
\(=\dfrac{x\left(y-1\right)-y-1}{\left(y+1\right)\left(y-1\right)}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}\)
\(=\dfrac{xy-x-y-1+y}{y^2-1}=\dfrac{xy-x-1}{y^2-1}\)
3, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy x = 2 hoặc x = -5
Bài 1 :
Sửa đề :\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+\left(x+7\right)\)
\(=2x^2+3x-10x-15-x^2+6x+x+7\)
\(=2x^2-2x^2-7x+7x-15+7\)
\(=-8\)
\(\Rightarrow\) Biểu thức trên bằng 8 nên giá trị của biểu thức ko phụ thuộc vào giá trị của biến x
Bài 2 , 3 : Tú làm ròi nghĩ làm