K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

N
2 tháng 7 2017

A = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}-\sqrt{2}-\sqrt{10}\)

Ta có : B = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow B^2=16-2\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)

\(=16-2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)

\(=16-2\sqrt{24-8\sqrt{5}}\)

\(=16-2\sqrt{\left(2\sqrt{5}-2\right)^2}=16-2\left(2\sqrt{5}-2\right)\)

\(=20-4\sqrt{5}\)

\(8+2\sqrt{10+\sqrt{5}}>8-2\sqrt{10+2\sqrt{5}}\)

\(\Rightarrow B>0\)

\(\Rightarrow B=\sqrt{20-4\sqrt{5}}=2\sqrt{5-\sqrt{5}}\)

\(\Rightarrow A=B-\sqrt{2}-\sqrt{10}=2\sqrt{5-\sqrt{5}}-\sqrt{2}-\sqrt{10}=2\)

21 tháng 8 2015

tính riêng 2 cái đầu = cách bình phương lên, sau đó thay vào, bấm nút li-ke   Ngu Người 

30 tháng 9 2018

Cm giúp mình với nhé. Mình cảm ơn ạ!

đề bài là j vậy bn

28 tháng 6 2023

đề là rút gọn các biểu thức sau

nhờ mọi người giải giúp mình. cảm ơn mn nhìu

a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)

\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)

b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)

=2căn 5-2-2căn 5

=-2

d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)

\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)

\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)

15 tháng 6 2019

\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}}\)

\(A^2=8+2\sqrt{10+2\sqrt{5}+8-2\sqrt{10+2\sqrt{5}}+}2\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(A^2=16+2\left[64-4\left(10+2\sqrt{5}\right)\right]\)

\(A^2=16+128-8\left(10+2\sqrt{5}\right)\)

\(A^2=144-80-16\sqrt{5}\)

\(A^2=64-16\sqrt{5}\)

15 tháng 6 2019

\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2.\sqrt{10+2\sqrt{5}}+2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)

\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}+2^2}\)

\(=16+2\sqrt{\left(2\sqrt{5}-2\right)^2}=16+2\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)

\(=2+2.\sqrt{2}.\sqrt{10}+10\)

\(=\left(\sqrt{2}+\sqrt{10}\right)^2\)

=> \(A=\sqrt{2}+\sqrt{10}\)

15 tháng 6 2019

Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này!

16 tháng 8 2015

Biến đổi vế trái ta có :

 \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(\sqrt{2}\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)\)

Đặt A  = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

A^2 = \(4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

    =  8 + \(2\sqrt{16-\left(10-2\sqrt{5}\right)}\)

     = \(8+2\sqrt{16-10+2\sqrt{5}}\)

     = \(8+2\sqrt{6+2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

=> A = \(\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)

=> \(\sqrt{2}A=\sqrt{2}\left(\sqrt{5}+1\right)=\sqrt{10}+\sqrt{2}=VP\) ( ĐPCM) 

 

16 tháng 8 2015

haha        

18 tháng 10 2021

\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)