Tìm x biết:
\(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\dfrac{x+1}{17}\right)+\left(1+\dfrac{x+2}{16}\right)=\left(1+\dfrac{x+3}{15}\right)+\left(1+\dfrac{x+4}{14}\right)\)
\(\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
Vì : \(\dfrac{1}{17}< \dfrac{1}{15};\dfrac{1}{16}< \dfrac{1}{14}\Rightarrow\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}< 0\)
\(\Rightarrow x+18=0\Rightarrow x=0-18=-18\)
Từ đầu đến đến dòng thứ tư thì mình đồng ý, nhưng mình nghĩ không nhất thiết phải so sánh, chỉ cần làm tiếp như sau:
\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+18=0\\\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}=0\end{matrix}\right.\)
rồi tính tiếp là OK rồi. Dù gì thì cũng xin cảm ơn nha ;)
a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)
hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)
\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)
c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=64\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)
\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
\(\dfrac{x-3}{13}+\dfrac{x-3}{14}=\dfrac{x-3}{15}+\dfrac{x-3}{16}\)
\(\Leftrightarrow\dfrac{1680.\left(x-3\right)+1560.\left(x-3\right)-1456.\left(x-3\right)-1365.\left(x-3\right)}{21840}=0\)
\(\Leftrightarrow\left(x-3\right).\left(1680+1560-1456-1365\right)=0\)
\(\Leftrightarrow\left(x-3\right).419=0\)
\(\Leftrightarrow419x=1257\)
\(\Leftrightarrow x=3\)
Lời giải:
\(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)
\((x-3)\left(\frac{1}{13}+\frac{1}{14}\right)=(x-3)\left(\frac{1}{15}+\frac{1}{16}\right)\)
\((x-3)\left[\left(\frac{1}{13}+\frac{1}{14}\right)-\left(\frac{1}{15}+\frac{1}{16}\right)\right]=0\)
Ta thấy:
\(\frac{1}{13}>\frac{1}{15}; \frac{1}{14}>\frac{1}{16}\Rightarrow \frac{1}{13}+\frac{1}{14}> \frac{1}{15}+\frac{1}{16}\)
Do đó biểu thức trong ngoặc vuông lớn hơn $0$ hay khác $0$
$\Rightarrow x-3=0$
$\Leftrightarrow x=3$
b: \(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+x-6\right)\)
\(\Leftrightarrow3x^2-10x+3=3x^2+3x-18\)
=>-13x=-21
hay x=21/13
c: \(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\)
=>x-100=0
hay x=100
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)
\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)
\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)
Bài 2:
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)
\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
Vì \(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)
a) Ta có: \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)
\(\Leftrightarrow\dfrac{x-2}{15}-1+\dfrac{x-3}{14}-1+\dfrac{x-4}{13}-1+\dfrac{x-5}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-17}{15}+\dfrac{x-17}{14}+\dfrac{x-17}{13}+\dfrac{x-17}{12}=0\)
\(\Leftrightarrow\left(x-17\right)\left(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
mà \(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}>0\)
nên x-17=0
hay x=17
Vậy: x=17
b) Ta có: \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)
\(\Leftrightarrow\dfrac{x+1}{19}+1+\dfrac{x+2}{18}+1+\dfrac{x+3}{17}+1+...+\dfrac{x+18}{2}+1=0\)
\(\Leftrightarrow\dfrac{x+20}{19}+\dfrac{x+20}{18}+\dfrac{x+20}{17}+...+\dfrac{x+20}{2}=0\)
\(\Leftrightarrow\left(x+20\right)\left(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}>0\)
nên x+20=0
hay x=-20
Vậy: x=-20
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)
Ta có: \(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)
\(\Rightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+3}{15}+1+\dfrac{x+4}{14}+1\)
\(\Rightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\Rightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\Rightarrow\left(x+18\right).\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\) (1)
Mà \(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\ne0\) (2)
Từ (1) và (2) => x+18=0 => x=-18
Vậy x=-18
Đăng trùng.