Cho tam giác ABC cân tại A,đường cao AD. Từ D kẻ DE vuông góc với AB,DF vuông góc với AC Trên tia đối của tia DE lấy điểm M sao cho DE = DM. Chứng minh:
a, BE=CF
b, AD là trung trực của đoạn thẳng EF
c, Tam giác EFM là tam giác vuông
d, BE//CM
Help me!!!
a) Vì \(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
mà AD là đường cao
=> AD là đường trung tuyến \(\Delta ABC\)
=> BD = DC
Xét \(\Delta BED\) và \(\Delta CFD\) có:
\(\widehat{BED}=\widehat{CFD}\left(90^0\right)\)
BD = DC (cmt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
Do đó: \(\Delta BED=\Delta CFD\left(ch-gn\right)\)
=> BE = CF (hai cạnh tương ứng)
b) Vì \(\Delta BED=\Delta CFD\left(cmt\right)\)
=> ED = DF (hai cạnh tương ứng)
=> \(\Delta EDF\) cân tại D
=> D \(\in\) đường trung trực cạnh EF (1)
Xét \(\Delta AED\) và \(\Delta AFD\) có:
AD (chung)
\(\widehat{AED}=\widehat{AFD}\left(=90^0\right)\)
ED = DF (cmt)
Do đó: \(\Delta AED=\Delta AFD\) (cạnh huyền- cạnh góc vuông)
=> AE = AF(hai cạnh tương ứng)
=> \(\Delta AEF\) cân tại A
=> A \(\in\) đường trung trực cạnh EF (2)
(1); (2) => AD là đường trung trực cạnh EF
c) ta có: AD \(\perp\) BC và \(AD\perp EF\)
=> BC // EF
Gọi giao điểm của FM và DC là H ta có:
Xét \(\Delta BED\) và \(\Delta CMD\) có:
ED = DM (gt)
\(\widehat{EDB}=\widehat{CDM}\) (đối đỉnh)
BD = DC (cmt)
Do đó: \(\Delta BED=\Delta CMD\) (c-g-c)
mà \(\Delta BED=\Delta CFD\)
=> \(\Delta CMD=\Delta CFD\)
=> CF = CM (hai cạnh tương ứng)
=> \(\Delta FCM\) cân tại C
=> C \(\in\)đường trung trực cạnh FM (1)
DE = DF (cmt)
mà DE = DM
=> DF = DM
=> \(\Delta FDM\) cân tại D
=> D \(\in\) đường trung trực cạnh FM (2)
(1); (2) => DC là đường trung trực cạnh FM
=> DH \(\perp\) FM
mà BC // EF
=> EF \(\perp\) FH
=> \(\widehat{EFM}=90^0\) hay \(\Delta EFM\) vuông tại F
d) Vì \(\Delta BED=\Delta CMD\)
=> \(\widehat{BED}=\widehat{CMD}=90^0\)(hai góc tương ứng)
=> BE//CM(so le trong)
Bài đó chưa được tick nhỡ sai thì sao