K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017


a, Xét tam giác ABC có:

BAC + (ABC + ACB)=1800

Xét tam giác MBC có:

BMC + (MCB + MBC)=1800

\(\Rightarrow\)BAC + (ABC + ACB) = BMC + (MCB + MBC) (1)

Vì M nằm trong tam giác ABC nên BM nằm giữa 2 tia BC và BA.

\(\Rightarrow\) ABC > MBC

Tương tự ta được: ACB > MCB.

\(\Rightarrow\)ABC + ACB > MBC + MCB (2)

Từ (1) và (2) suy ra: BAC < BMC.

b, Kéo dài AM, cắt BC tại E.

Xét tam giác ABM có BME là góc ngoài tại đỉnh M nên ta có:

BME = MAB + MBA. (1)

Tương tự đối với tam giác AMC có CME là góc ngoài tại đỉnh M nên ta cũng có:

CME = MAC + MCA. (2)

Từ (1) và (2) suy ra:

BME+CME = MAB + MBA + MAC + MCA.

\(\Rightarrow\)BMC = BAC + ABM + ACM

Sorry bn, mk ko gõ đc dấu mũ nha

3 tháng 8 2021

a)Từ A kẻ đường thẳng đi qua M cắt BC tại H

Ta có:\(\widehat{BAM}+\widehat{ABM}=\widehat{BHM}\) (tính chất góc ngoài của ΔABM)

Ta có:\(\widehat{MAC}+\widehat{ACM}=\widehat{CMH}\) (tính chất góc ngoài của ΔACM)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}+\widehat{MAC}+\widehat{ACM}=\widehat{CMH}+\widehat{BHM}\)

\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=\widehat{BMC}\left(đpcm\right)\)

3 tháng 8 2021

thank