Cho tam giác ABC vuông tại A ( AB\(\ne\) AC) Chứng minh rằng:
a) \(\dfrac{sinB-sinC}{cosB-cosc}\) <0
b) \(\dfrac{tanB-tanC}{cotB-cotC}\) <0
c) cotB+cotC>2
2. CMR với mọi góc nhọn \(\alpha\) ta có: tan2\(\alpha\) +1=\(\dfrac{1}{cos^2\alpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với tam giác $ABC$ vuông tại $A$ ta có:
\(\sin B=\frac{AC}{BC}; \sin C=\frac{AB}{BC}; \cos B=\frac{AB}{BC}; \cos C=\frac{AC}{BC}\)
Vì $AB$ khác $AC$ nên hiển nhiên \(\cos B\neq \cos C\) nên mẫu số luôn đảm bảo khác 0
Do đó:
\(\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{\frac{AC}{BC}-\frac{AB}{BC}}{\frac{AB}{BC}-\frac{AC}{BC}}=\frac{AC-AB}{AB-AC}=-1< 0\)
Ta có đpcm
Theo định lí sin:
\(sinB=\dfrac{b}{2R};sinC=\dfrac{c}{2R};sinA=\dfrac{a}{2R}\)
Theo định lí cosin:
\(cosB=\dfrac{a^2+c^2-b^2}{2ac};cosC=\dfrac{a^2+b^2-c^2}{2ab};cosA=\dfrac{b^2+c^2-a^2}{2bc}\)
Theo giả thiết ta có:
\(\left\{{}\begin{matrix}sinB+sinC=2sinA\\cosB+cosC=2cosA\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2R}+\dfrac{c}{2R}=2.\dfrac{a}{2R}\\\dfrac{a^2+c^2-b^2}{2ac}+\dfrac{a^2+b^2-c^2}{2ab}=2.\dfrac{b^2+c^2-a^2}{2bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{a^2b+bc^2-b^3}{2abc}+\dfrac{a^2c+b^2c-c^3}{2abc}=\dfrac{b^2+c^2-a^2}{bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{\left(b+c\right)\left(a^2+bc-b^2-c^2+bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{2a\left(a^2-b^2-c^2+2bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+2bc=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\left(\dfrac{b+c}{2}\right)^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3b^2+3c^2-6bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\Delta ABC\) đều
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
Ta có : \(\widehat{B}+\widehat{C}=90^o\)
\(\Rightarrow\cos C=\sin B=\frac{1}{3}\)
Ta có : \(\sin^2C+\cos^2C=1\Rightarrow\sin^2C=1-\cos^2C=\frac{8}{9}\)
\(\Rightarrow\sin C=\frac{2\sqrt{2}}{9}\)
Bài 2:
Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)
Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)
\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)