Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E
a) Tứ giác ADOE là hình gì ? Vì sao ?
b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI LÀM
a, xét tứ giác ADOE có:
góc A= góc E=góc D=90O
mà ta thấy: OE=OD( bán kính = nhau)
vậy tứ giác ADOE là hình vuông (dhnb)
a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.
Có SΔABC=SΔOAB+SΔOBC+SΔOAC
=12 OD.AB+12 OE.AC+12 OH.BC
=12 r.(AB+AC+BC)
=12 pr ( là chu vi của tam giác , là bán kính đường tròn nội tiếp).
c) Áp dụng định lý Pi-ta-go ta có: BC=√AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.r⇔r=2(cm).
Ta có:
Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật
Lại có : AD = AE (tính chất hai tiếp tuyến giao nhau)
Vậy tứ giác ADOE là hình vuông
Áp dụng định lí Pitago vào tam giác vuông ABC ta có :
B C 2 = A B 2 + A C 2 = 3 2 + 4 2 = 25
Suy ra : BC = 5 (cm)
Theo tính chất hai tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF)
= AB + AC – (BD + CF)
= AB + AC – (BF + CF)
= AB + AC – BC
Suy ra:
Ta có: AC = 5
Gọi bán kính đường tròn nội tiếp là r
Ta có:
S(ABC) =S(OAB) + S(OAC) +S(OBC) (1)
S(OAB) = r*AB/2
S(OAC) = r*AC/2
S(OBC) = r*BC/2
=> S(OAB) + S(OAC) +S(OBC) = r* (AB+BC+CA)/2 = 6r (2)
Mặt khác; S(ABC) = AB.AC/2 = 6 (3)
Từ (1), (2), (3) :
=> 6r = 6 => r = 1.
Ủng hộ mk nha!
a, Tứ giác ADOE có 3 góc vuông => ADOE là hình chữ nhật
OE = OD ( =R ) => ADOE là hình vuông
b, Ta có R ( AB + AC + BC ) = AB . AC ( = 2. diện tích tam giác ABC )
\(BC^2=AB^2+AC^2=5^2+12^2=169=>BC=13\)
=> R ( 5+12+13) = 12 . 5 => R = 2
a, HS tự làm
b, HS tự làm
c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này
d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N
Đặt BH=2R; CH= 2R’
∆IOM vuông tại M có:
I M 2 = I O 2 - O M 2 = R + r 2 - R - r 2 = 4 R r
Tương tự , ∆ION có I N 2 = 4 R ' r
Suy ra IM+IN=EF=AH
Vậy 2 R r + 2 R ' r = 2 R R '
=> r R + R ' = R R '
=> r = R R ' R + R ' 2
a) tứ giác ADOE là hình vuông
vì \(\left\{{}\begin{matrix}DAE=90\left(giảthiết\right)\\ODA=90\left(DlàtiếpđiểmcủađườngtrònvớiAB\right)\\OEA=90\left(Elàtiếpđiểmcủađườngtròn\:vớiAC\right)\end{matrix}\right.\)
và OD = OE = R