K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Ta có:

\(55^{n+1}-55^n=55^n.\left(55-1\right)=55^n.54\)

\(54⋮54\) nên \(55^n.54⋮54\)

\(\Rightarrow55^{n+1}-55^n\) chia hết cho 54 (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

\(55^{n-1}-55^n\) \(=55^n.55-55^n\)

\(=55^n\left(55-1\right)\)

\(=55^n.54\)

Vì 54 : 54 nên \(55^n.54:54\)

=> \(55^{n+1}-55^n\) chia hết cho 54 (đccm)

#BẠN_HỌC_TỐT

29 tháng 9 2019

Có : 55n + 1 – 55n

= 55n.55 – 55n

= 55n(55 – 1)

= 55n.54

Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.

Vậy 55n + 1 – 55n chia hết cho 54.

7 tháng 7 2020

Theo đề ra , ta có :

Có : 55n + 1 – 55n

= 55. 55 – 55n

= 55( 55 – 1 )

= 55. 54

Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n

Vậy 55n + 1  –  55n chia hết cho 54.

8 tháng 6 2021

`55^(n+1)-55^n = 55^n . 55 - 55^n`

`= 55^n . (55-1) = 55^n . 54 vdots 54 forall n`

sao lại là với mọi n, nếu n=-1 thi sao

18 tháng 7 2018

\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Ta có: \(54⋮54\)

\(\Rightarrow55^n.54⋮54\)

\(\Rightarrow55^{n+1}-55^n⋮54\)

                              đpcm

18 tháng 7 2018

\(\left(5n+2\right)^2-4\)

\(=\left(5n+2\right)^2+2^2\)

\(=\left(5n+2+2\right).\left(5n+2-2\right)\)

\(=\left(5n+4\right).\left(5n\right)\)

Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n

5 tháng 6 2016

 Giải

55^(n+1) -55^n 
= 55^n.55 -55^n 
=55^n( 55 - 1) 
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

31 tháng 7 2016

55^(n+1) -55^n 
= 55^n.55 -55^n 
=55^n( 55 - 1) 
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)

31 tháng 7 2016

cảm ơn bạn T.T

14 tháng 8 2016

\(55^{n+1}-55^n\)

\(=55^n.55-55^n.1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì có 54 trong tích 

=> 55n . 54 chia hết cho 54

=> Điều phải chứng minh

14 tháng 8 2016

55n+1−55= 55n.55−55= 55n(55−1)=(55n.54)⋮54

- Vậy (55n+1−55n)⋮54

21 tháng 6 2017

Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)\(55^n\left(55-1\right)=55^n.54\)

Mà  \(55^n.54⋮54\)(luôn đúng) => \(55^{n+1}-55^n⋮54\)(ĐPCM)

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

3 tháng 6 2016

Ta có: 

55n+1-55n=55n(55-1)=55n.54 chia hết cho 54

Vậy 55n+1-55n chia hết cho 54 (đpcm)

3 tháng 6 2016

\(55^{n+1}-55^n=55^n\cdot\left(55-1\right)=55^n\cdot54\)chia hết cho 54 với mọi n là số tự nhiên.