CMR:
A=(x+2)(x-3)-(x-2)(x+3) chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)
\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)
\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)
\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\le0\)
\(\Rightarrow x=y\)
Thế vào pt đầu:
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)
\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)
\(\Rightarrow...\)
2. 4 biến xét dài quá, để người khác
Bài 1:
\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)
\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)
\(=3x^2-3x+6+2\)
\(=3x^2-3x+8\)
\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)
\(A=\left(x^2-9\right)\left(x^2+9\right)-\left(x^2-3\right)\left(x^2+3\right)\)
\(=x^4-81-\left(x^4-9\right)\)
\(=-81+9=-72\)
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)
\(A=(x+2)(x-3)-(x-2)(x+3)\)
\(=x\left(x-3\right)+2\left(x-3\right)-x\left(x-2\right)-3\left(x-2\right)\)
\(=x^2-3x+2x-6-x^2+2x-3x+6\)
\(=\left(x^2-x^2\right)-\left(3x+3x\right)+\left(2x+2x\right)+\left(6-6\right)\)
\(=-2x⋮2\forall x\) Hay A chẵn
\(A=(x+2)(x-3)-(x-2)(x+3)\)
\(A=x(x-3)+2(x-3)-x(x+3)+2(x+3)\)
\(A=x^2-3x+2x-6-x^2-3x+2x+6\)
\(A=(x^2-x^2)-(3x+3x)+(2x+2x)-(6+6)\)
\(A=-6x+4x\)
\(A=-2x\)
\(\Leftrightarrow A\)chẵn