K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Áp dụng bđt AM-GM cho 2 số không âm ta có:

\(\dfrac{1}{\sqrt{1.2006}}>\dfrac{1}{\dfrac{1+2006}{2}}=\dfrac{2}{2007}\)

TT: \(\dfrac{1}{\sqrt{2.2005}}>\dfrac{2}{2007}\)

...

\(\dfrac{1}{\sqrt{2006.1}}>\dfrac{2}{2007}\)

Cộng vế với vế ta được:

\(S>\dfrac{2}{2007}.2006\)

14 tháng 6 2017

ko đc tag tên có đc lm ko

13 tháng 8 2017

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

13 tháng 8 2017

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

12 tháng 8 2017

a, (Phần a đề bài phải là \(\left(1+\dfrac{1}{a}-\dfrac{1}{a+1}\right)^2\) mới đúng).

Nếu như vậy phần a ta sẽ áp dụng hằng đẳng thức:

(a + b - c)2 = a2 + b2 + c2 +2ab - 2ac - 2bc rồi khai triển vế trái.

b) Sau khi kahi triển hằng đẳng thức và chứng minh được công thức ở phần a, ta sẽ áp dụng vào phần b rồi tính.

13 tháng 8 2017

bạn làm luôn được không

15 tháng 12 2021

\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)

Vậy PT có nghiệm \(x=2008\)

10 tháng 9 2021

\(Q=\sqrt{1+2006^2+\left(\dfrac{2006}{2007}\right)^2}+\dfrac{2006}{2007}\)  

   =\(1+2006+\dfrac{2006}{2007}+\dfrac{2006}{2007}\)

   =\(2007+\dfrac{4012}{2007}\)

   =\(\dfrac{2007^2}{2007}+4012\)

   =\(\dfrac{4028049}{2007}+\dfrac{4012}{2007}\)

  =\(\dfrac{4032061}{2007}\)

 

\(Q=\sqrt{1+2006^2+\dfrac{2006^2}{2007^2}}+\dfrac{2006}{2007}\)

\(=1+2006+\dfrac{2006}{2007}+\dfrac{2006}{2007}\)

\(=\dfrac{4032061}{2007}\)

17 tháng 8 2017

Câu a :

Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :

\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)

\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)

.......................................................

\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)

Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)

\(\Rightarrowđpcm\)

17 tháng 8 2017

Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.

11 tháng 11 2017

Mình chỉ viết CT tổng quát thôi nha rồi bạn tự thay vào

a, \(\frac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)( }\sqrt{n}+\sqrt{n+1}} =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n}\sqrt{n+1} } =\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \)

b,\(\frac{1}{\sqrt{n}+\sqrt{n+1} }=\frac{\sqrt{n+1}-\sqrt{n} }{1}= \sqrt{n+1}-\sqrt{n} \)

12 tháng 11 2017

Cảm ơn bạn !!

30 tháng 1 2022

- Mình dùng cách lớp 8 để làm câu b được không :)?

30 tháng 1 2022

ko :)