Cho \(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}v\text{à}.c\ne0.CMR:\dfrac{a}{b}=\dfrac{b}{c}.\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
3 tháng 4 2023
=>\(\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)
=>10ac+bc=10b^2+bc
=>ac=b^2
=>a/b=b/c=k
=>a=bk; b=ck
=>a=ck^2; b=ck
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{c^2k^4+c^2k^2}{c^2k^2+c^2}=k^2\)
\(\dfrac{a}{c}=\dfrac{ck^2}{c}=k^2\)
=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
1 tháng 11 2018
Với số lượng chữ b ở tử và mẫu như nhau, ta có:
(abbb...b) / (bbb...bc)
= (a/c) . (bb...b / bb...b)
= (a/c) . 1
= a/c (đpcm)
16 tháng 10 2022
Câu 2:
Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)
=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc
=>9ac-9b^2=0
=>ac-b^2=0
=>ac=b^2
=>a/b=b/c
Ta có: \(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}\)
\(\Rightarrow\overline{ab}\left(b+c\right)=\overline{bc}\left(a+b\right)\)
\(\Rightarrow ab^2+abc=abc+b^2c\)
\(\Rightarrow ab^2=b^2c\)
\(\Rightarrow ab=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\rightarrowđpcm.\)
Ta có:
\(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}\)
\(\Rightarrow\overline{ab}.\left(b+c\right)=\overline{bc}.\left(a+b\right)\)
\(\Rightarrow\left(10a+b\right)\left(b+c\right)=\left(10b+c\right)\left(a+b\right)\)
\(\Rightarrow10ab+10ac+b^2+bc=10ab+10b^2+ac+bc\)
\(\Rightarrow10ac+b^2=10b^2+ac\) (bớt mỗi bên đi \(10ab+bc\))
\(\Rightarrow10ac-ac=10b^2-b^2\Rightarrow9ac=9b^2\)
\(\Rightarrow ac=b^2\) (chia mỗi bên cho 9)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\) (đpcm)
Chúc bạn học tốt!!!