Cho 2x3 = 3y3 = 4z3
Chứng minh rằng : \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)
Mặt khác:
\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)
\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)
Bài này hay phết: Theo mik bạn nên thêm ĐK: x;y;z đồng thời khác 0.
Có \(2x^3=3y^3=4z^3\\ \)
Mong đề bài của bạn ko thiếu