Cho N = 1+2+2^2+2^3+2^4+.......+2^300. Chứng minh N không chia hết cho 7
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
5 tháng 4 2017
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
4 tháng 6 2019
a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300
N có 301 số hạng. Nhóm 3 số vào 1 nhóm ta được 100 nhóm và thừa 1 số
=> N = 1+(2+22+23)+(24+25+26)+....+(2298+2299+2300)
=> N = 1+2(1+2+22)+24(1+2+22)+....+2298(1+2+22)
=> N = 1 + 2.7 + 24.7 +.....+ 2398.7
=> N = 1 + 7.(2+24+...+2398)
Vì 7.(2+24+...+2398) chia hết cho 7
Mà 1 chia 7 dư 1
=> 1 + 7.(2+24+...+2398) chia 7 dư 1
=> N chia 7 dư 1
=> N không chia hết cho 7 (đpcm)