K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

a) Gọi d là ƯCLN(n+1;2n+3)

n+1\(⋮\)d=)2(n+1)\(⋮\)d=)2n+2\(⋮\)d

2n+3\(⋮\)d

Vì 2n+3 và 2n+2\(⋮\)d nên

(2n+3)-(2n+2) chia hết cho d

2n+3-2n-2 chia hết cho d

1 chia hết cho d

=) phân số trên tối giản với mọi số tự nhiên n

b) Gọi d là UCLN (2n+3 ;4n+8)

áp dụng như cách ở trên sẽ tìm ra bn nhé,bài này cs câu tương tự nên mk chỉ lm 1 câu

4 tháng 6 2017

Tham khảo nè:

Câu hỏi của Thảo Vi - Toán lớp 6 - Học toán với OnlineMath

4 tháng 3 2022

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

8 tháng 6 2017

Gọi d là UCLN(n+1;2n+3)

Vì d là UCLN(n+1;2n+3) nên:

\(n+1⋮d\Rightarrow2\left(n+1\right)⋮d\Rightarrow2n+2⋮d\)

\(2n+3⋮d\)

\(2n+2;2n+3⋮d\) nên:

\(\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(2n+3-2n-2⋮d\)

\(1⋮d\)

\(\Rightarrow\dfrac{n+1}{2n+3}\)tối giản với mọi n

b)Câu b tương tự

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

30 tháng 4 2017

a)gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

và n+1 chia hết cho d

=>2(n+1) chia hết cho d

=>2n+3-2(n+1)chia hết cho d

hay 1chia hết cho d

=>d=1

=>phân số \(\dfrac{n+1}{2n+3}\)tối giản

b)Gọi d là ƯCLN(2n+3;4n+8)

=>4n+8chia hết cho d

và 2n+3 chia hết cho d

=>2(2n+3) chia hết cho d

=>4n+8-2(2n+3) chia hết cho d

hay 2 chia hết cho d

Do 2n+3 là số lẻ và 2n+3 chia hết cho d

=>d không thể là số chẵn=>d=1

=>phân số \(\dfrac{2n+3}{4n+8}\) tối giản

9 tháng 5 2017

Gọi d=ƯCLN (n+1 ; 2n+3)

Do đó d thuộc ƯC (n+1 ; 2n+3)

=> n+1 chia hết cho d ; 2n+3 chia hết cho d

=> 2n+2 chia hết cho d ; 2n+3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> n+1 và 2n+3 là hai số nguyên tố cùng nhau

=> n+1/2n+3 là phân số tối giản với mọi số n.

27 tháng 4 2017

a) Gọi d là ƯCLN(n+1;2n+3)

=>n+1 chia hết cho d và 2n+3 chia hết cho d

=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>(2n+3)-(2n+2) chia hết cho d

hay 1 chia hết cho d

=>d=1

=> phân số \(\dfrac{n+1}{2n+3}\) tối giản với mọi số tự nhiên n

b) Gọi d là ƯCLN(4n+8;2n+3)

=>4n+8 chia hết cho d và 2n+3 chia hết cho d

=>2(n+3) chia hết cho d hay 4n+6 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

hay 2 chia hết cho d

Do 2n+3=2(n+1)+1 không chia hết cho 2=>d phải là số lẻ và 2 chia hết cho d =>d=1

=> phân số \(\dfrac{2n+3}{4n+8}\) tối giản với mọi số tự nhiên n

27 tháng 4 2017

Bạn vào đây nhé: Câu hỏi của Nguyễn Đinh Huyền Mai - Toán lớp 6 | Học trực tuyến

15 tháng 7 2017

Gọi \(d\)\(UCLN\left(2n+3;4n+8\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(2⋮d\)

\(\Rightarrow\dfrac{2n+3}{4n+8}\) tối giản khi và chỉ khi \(n\in\left\{\pm1;\pm2\right\}\)

13 tháng 4 2015

a) Gọi d là ƯCLN của n+1 và 2n+3, ta có:

(2n+3)-(n+1) chia hết cho d

=> (2n+3)-2(n+1) chia hết cho d

=> 2n+3-2n-2 chia hết cho d

=> 2n-2n+3-2 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy n+1/2n+3 là 2 phân số tối giản 

b) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:

(4n+8)-(2n+3) chia hết cho d

4n+8-2(2n+3) chia hết cho d

4n+8-4n-6 chia hết cho d

4n-4n+8-6 chia hết cho d

2 chia hết cho d => d=2

nhưng vì 2n+3 lẻ nên d là số lẻ => d=1

vậy 2n+3/4n+8 là 2 phân số tối giản

c) gọi d là ưcln của 3n+2 và 5n+3, ta có

(3n+2)-(5n+3) chia hết cho d

5(3n+2)-3(5n+3) chia hết cho d

15n+10-15n-9 chia hết cho d

15n-15n+10-9 chia hết cho d

1 chia hết cho d => d=1

vậy 3n+2/5n+3 là 2 phân số tối giản 

13 tháng 4 2015

a)Gọi ƯCLN(n+1;2n+3)=d

=> n+1 chia hết cho d; 2n+3 chia hết cho d

=> 2(n+1)chia hết cho d; 2n+3 chia hết cho d

=>[2n+3-(2n+1)]chia hết cho d

=>2n+3-2n-2 chia hết cho d

(2n-2n)+(3-2)chia hết cho d

1 chia hết cho d => d=1; ƯCLN(n+1;2n+3)=1

Vậy n+1/2n+3 là phân số tối giản với mọi số tự nhiên n