So sánh :
A = \(\dfrac{10^{50}+2}{10^{50}-1}\) và B = \(\dfrac{10^{50}}{10^{50}-3}\)
Các bạn ơi giúp mình với !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2022}{50^8}\)
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
B = \(\dfrac{2023}{50^{10}}\) + \(\dfrac{2021}{5^8}\) = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{1}{50^{10}}\) + \(\dfrac{2021}{50^8}\)
Vì: \(\dfrac{1}{50^{10}}\) < \(\dfrac{1}{50^8}\) nên \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^{10}}\) < \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
Vậy A > B
\(\frac{10^{50}+1}{10^{50}-3}=\frac{\left(10^{50}-3\right)+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)
\(\frac{10^{50}+3}{10^{50}-1}=\frac{\left(10^{50}-1\right)+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)
Ta so sánh \(\frac{4}{10^{50}-3}với\frac{4}{10^{50}-1}\) . Ta có \(\frac{4}{10^{50}-3}\) > \(\frac{4}{10^{50}-1}\) => 1050+1/1050-3 > 1050+3/1050-1
Ta có :
\(\frac{10^{50}+1}{10^{50}-3}=\frac{10^{50}-3+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)
\(\frac{10^{50}+3}{10^{50}-1}=\frac{10^{50}-1+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)
Do \(\frac{4}{10^{50}-3}>\frac{4}{10^{50}-1}\)
\(\Rightarrow1+\frac{4}{10^{50}-3}>1+\frac{4}{10^{50}-1}\)
\(\Rightarrow\frac{10^{50}+1}{10^{50}-3}>\frac{10^{50}+3}{10^{50}-1}\)
Chúc bạn học tốt !!!
Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)
C1:A = \(\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}\)
= \(1+\frac{3}{10^{50}-1}\)
B = \(\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}\)
= \(1+\frac{3}{10^{50}-3}\)
Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)=) \(1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\)=) \(A< B\)
C2: Áp dụng tính chất : Nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì B > 1 =) B > \(\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
(=) B > A
Ta có: \(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)
Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)
Ta có:
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)
Vì \(10^{50}-1>10^{50}-3\Rightarrow\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)(2 phân số có cùng tử số, mẫu số của phân số nào lớn hơn thì phân
số đó nhỏ hơn)
\(\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}.\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}.\)
Do 1050-1 > 1050-3 ; => \(1+\frac{3}{10^{50}-3}>1+\frac{3}{10^{50}-1}\)
=> B > A
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) \(10^{20}\) và \(9^{10}\)
Vì 10 > 9 ; 20 > 10
nên \(10^{20}>9^{10}\)
Vậy \(10^{20}>9^{10}\)
b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì 243 > 125 nên \(125^{10}< 243^{10}\)
Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) \(64^8\) và \(16^{12}\)
Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vậy \(64^8=16^{12}\left(=4^{24}\right)\)
d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
C1:
\(A=\dfrac{10^{50}+2}{10^{50}-1}=\dfrac{10^{50}-1}{10^{50}-1}+\dfrac{3}{10^{50}-1}=1+\dfrac{3}{10^{50}-1}\\ B=\dfrac{10^{50}}{10^{50}-3}=\dfrac{10^{50}-3}{10^{50}-3}+\dfrac{3}{10^{50}-3}=1+\dfrac{3}{10^{50}-3}\\ \text{Vì }10^{50}-3< 10^{50}-1\Rightarrow\dfrac{3}{10^{50}-3}>\dfrac{3}{10^{50}-1}\Rightarrow1+\dfrac{3}{10^{50}-3}>1+\dfrac{3}{10^{50}-1}\Leftrightarrow B>A\)
Vậy \(B>A\)
C2: Áp dụng \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\left(n>0\right)\)
Dễ thấy
\(B=\dfrac{10^{50}}{10^{50}-3}>1\\ \Rightarrow B=\dfrac{10^{50}}{10^{50}-3}>\dfrac{10^{50}+2}{10^{50}-3+2}=\dfrac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(B>A\)